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• Lecture I: Observations and planetary flow theory (GFD(⌘))
• Lecture II: Atmospheric LFV(*) & LRF(**)

Lecture III: EBMs(+), paleoclimate & “tipping points”
• Lecture IV: Nonlinear & stochastic models—RDS(v)

• Lecture V: Advanced spectral methods–SSA(±) et al.
• Lecture VI: The wind-driven ocean circulation

Overall Outline

(⌘) GFD = Geophysical fluid dynamics
(*) LFV = Low-frequency variability
(**) LRF = Long-range forecasting
(+) EBM = Energy balance model
(v) RDS = Random dynamical system
(±) SSA = Singular-spectrum analysis



Composite spectrum of climate variability!
Standard treatement of frequency bands:!
   1. High frequencies – white noise (or ‘‘colored’’) !
   2. Low frequencies – slow evolution of parameters !

From Ghil (2001, EGEC), after Mitchell* (1976)!
* ‘‘No known source of deterministic internal variability’’!
** 27 years – Brier (1968, Rev. Geophys.)!



Earth System Science Overview, NASA Advisory Council, 1986 



•  Temporal!
§  stationary, (quasi-)equilibrium!
§  transient, climate variability!

•  Space!
§  0-D (dimension 0)!
§  1-D!

 vertical!
 latitudinal!

§  2-D!
 horizontal!
 meridional plane!

§  3-D, GCMs (General Circulation Model)!
§  Simple and intermediate 2-D & 3-D models!

•  Coupling!
§  Partial!

 unidirectional!
 asynchronous, hybrid!

§  Full!

è Hierarchy: back-and-forth between the simplest and the most elaborate model, !
!                  and between the models and the observational data!

Climate models (atmospheric & coupled) : A classification!

Radiative-Convective Model(RCM) 

Energy Balance Model (EBM) 

Ro!

Ri!



Motivation 
•  There’s a lot of talk about “tipping points.”!
•  It sounds threatening, like falling off a cliff: that’s why we care!!
•  But what are they, and what do we know about them?!
•  Here’s a disambiguation page (cf. Wikipedia), first.!
•  Sociology: “the moment of critical mass, the threshold, the boiling 

point” (Gladwell, 2000); a previously rare phenomenon becomes rapidly 
and dramatically more common.!

•  Physics: the point at which a system changes from a stable equilibrium 
into a new, qualitatively dissimilar equilibrium (throwing a switch, tilting a 
plank, boiling water, etc.).!

•  Climatology: “A climate tipping point is a somewhat ill-defined concept 
[…]”— so we’ll try to actually define it better. !

M. Gladwell (2000) The Tipping Point: How Little Things Can Make a Big Difference.!
T. M. Lenton et al. (2008) Tipping elements in the Earth's climate system, PNAS, v. 105. !

•  Catastrophe theory: branch of bifurcation theory in the study of dynamical 
systems; here, a tipping point is “a parameter value at which the set of 
equilibria abruptly change.”  è Let’s see!!



Rotating Convection: An Illustration 

M. Ghil, P.L. Read & L.A. Smith (Astron. Geophys., 2010) 



Elementary Bifurcation Theory and Variational Principle!
1.  Fixed Points !

–  linear stability!
–  non-linear stability and attractor basins!

2. Saddle-node bifurcations!
–  multiple branches of stationary solutions!
–  linear stability!

3. Bifurcations in 1-D!
4. Non-linear stability and variational principle!

–  variational principle in 0-D!
–  variational principle in 1-D!

5. Bistability and hysteresis!

Outline, Tipping Points I 



1. Fixed points, I 
We start with a scalar ordinary differential equation (ODE)!

depending on the parameter μ.!
!

Linear stability,              .!
!
!
Consider an initial perturbation at             :!

For an infinitesimal perturbation                   :!

— Fixed point (FP)!



1. Fixed points, II 
If   λ < 0 ⇒ the fixed point (FP) is (linearly) stable 

If λ   > 0 ⇒ the FP is (linearly) unstable 

If λ   = 0 ⇒ the linear stability of the FP is neutral 

 
 
Some basic features on FPs:!
1.                             on all sub-intervals: FPs are isolated (generic property) 

2.  Basins of attraction are open intervals (possibly semi-infinite) 

 
 
 



How does the geometry of the solutions change when μ ≠ μ0     , i.e. how do the 
number of the stability of the stationary solution change?!
Let us start with the scalar case.!

A simple case: the saddle-node  ! ! ! ! ! !     .! ! !         
! ! ! ! !      ! ! ! !FPs:                     !!

!
FP stability: !
!
!
!
!

! !!
!
!
!
Let us now examine the nonlinear stability!

2. Saddle-node bifurcations 

Upper branch!
(linearly) stable!
!
!
!
Lower branch!
(linearly) unstable!unstable!

stable!



3. Bifurcations in n-D 
We studied the scalar case (n = 1). More generally, we have:!
 !                      ,                               ,         with                 and              .!

The behavior is "almost" linear in all the phase-parameter space                , except in 
the neighborhood of a few isolated points               : these are bifurcation points, 
where the Jacobian matrix                              is singular, i.e.                  !

!

In the case n = 2, we can reduce to the normal form :!
 !
 !
!
In the general case, the reduction gives :!

This shape explains the “saddle-
node bifurcation” terminology!

ẋ = f(x;µ) f 2 C(<n ⇥<)
x 2 <n



To deepen our understanding of stability, we have to examine the effect of 
larger perturbations.!
a)  Variational principle in 0-D!
                                              — pseudo-potential!
!
!
!
  V  will decrease along the ODE’s trajectory as long as :!
!
                   if     reaches a minimum, a maximum, or a saddle-point.!

Of course, only                    is stable — nonlinearly.!
With this result, we turn back to the saddle-node bifurcation:!

4. Non-linear stability and variational principle 



The combination of two saddle-node bifurcations can create a hysteresis 
phenomenon (an S-shaped curve) :!
!
!
!
!
!
!
!
!
!

                             : the top-left bifurcation!

                                                    : the bottom-right bifurcation!
!

5. Bistability and hysteresis 

unstable!

stable!

stable!



Energy Balance Models (EBMs)
1. Radiation Balance
– 0-D
– 1-D in the meridional direction

2. EBMs, formulation and analysis
– formulation in 0-D and 1-D
– linear stability in 0-D and 1-D

3. Bifurcations in 0-D and 1-D
4. Nonlinear stability and variational principle
– variational principle in 0-D
– variational principle in 1-D

5. Comparison with 3-D GCM
6. Bistability and hysteresis

Outline, EBMs



Observed circulation!
!
!
!
!
!
!
!
!
Schematic diagram of the !
atmospheric global circulation.*!

Direct Hadley circulation!
!
!
!
!
!
!
!
!
Idealized view of the !
atmosphere’s global circulation.*!

The mean atmospheric circulation!

*From Ghil and Childress (1987), Ch. 4!

Solar 
radiation!

IR 
radiation!

Poles!Equator!

Window!

Stove!



Radiative balance!

Long-term equilibrium between incident (solar, ultra-violet + visible) 
radiation Rin and outgoing (terrestrial, infrared) radiation Rout 
dominates climate.!

Refs. [1] Egyptian scribe (3000 B.C.) :!
!‘’The Sun heats the Earth,‘’ Rosetta stone, ll. 13–17.!

          [2] Herodotus (484 - cca. 425 B.C.)!

Rin!

Rout!







Earth’s Global Energy Budget 
K.E. Trenberth, J.T. Fasullo & J. Kiehl, 2009, 

Bull. Amer. Meteorol. Soc., 90(3), 311–323. 
 

 



Bilan énergétique de l’atmosphère terrestre
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Valeurs en rouge: cf. figure précédente.

D’après Kuo-Nan Liou, 1980: An Introduction to Atmospheric Radiation (fig. 8.19)



Energy balance models (EBMs)  
 
Problem 5: Compute the energy balance of Earth’s atmosphere.!

! !!
References!
!
1.  Reserve slides to this lecture.!

2.  Ghil, M., and S. Childress, 1987: Ch. 10 in Topics in Geophysical Fluid Dynamics: !
     Atmospheric Dynamics, Dynamo Theory and Climate Dynamics, !
     Springer-Verlag, New York, 485 pp.!
!
3. Liou, K.-N., 2002: An Introduction to Atmospheric Radiation, 2nd ed., !
    Academic Press, 583 pp. (compare also 1st ed., 1980)!



Bilan radiatif du système Terre-atmosphère en fonction de la latitude

φ

Avec a  le rayon de la Terre et 
F  le  flux atmosphérique et océanique de chaleur



φ
Transport atmosphérique et océanique d’énergie en fonction de la latitude



Energy-balance models (EBMs)!
— local calorific capacity!
— local surface temperature!
— incident solar radiation!
— terrestrial radiation towards space!
— heat redistribution ('diffusion’)!

!
Comments:!

1.    ,      ,      and      have to be calculated 
(“parameterized”) according to !

2. The model's main characteristic is Ri!
  !
with     the local albedo.!



0-D version (averaged over the globe)!

— average surface temperature 

— time (in thousands of years) 

— incident solar flux 

— albedo 

— calorific capacity 

— Stefan–Boltzmann constant 

— greenhouse effect factor!

Comments:!
    depends on the ice and snow cover, on cloud cover, etc. (implicit variables). All is 
parameterized as a function of the explicit variable    .!

C
dT̄

dt
= R

i

�R
o

= Q
�
1� �(T̄ )

 
� ⇥T̄ 4m(T̄ )



0-D EBM, I: Model solutions 

We want to write T  as:!

Stationary solutions:!

What happens if the sun “blinks” and                                     ?!
We have to go back to the original equation, which depends on time.!

deep freeze ! current climate!



0-D EBM, II: Stability condition 

Let’s define!
 

!
If               stable;!
if               unstable.!

We set                       : 
,!

Comment: in the 1-D case!
  

                             

;!



0-D EBM, III: Changes in parameters 

What happens if the insolation parameter μ changes, i.e., the “solar constant” 
changes? This may represent a change in solar luminosity, orbital parameters 
or in the optical properties of the atmosphere.!

vThe model’s three 
“climates” shift !
in value and, possibly, !
in number.!



1-D version (‘classic’ EBM) 

Boundary conditions:!
Pole (North)!
Equator!

— temperature!
— latitudinal coordinate!
— the observed climate!

Questions:!1. Stationary solutions (’climates’)?!
2. Stability?!
3. Perturbation & bifurcation?! (           )!



The three climates of the 1-D model 

Present climate!

“Deep freeze” or !
snow-ball Earth !



Stable!

Stable!

Unstable!

1-D EBM: Bifurcation diagram 

Climate sensitivity:!

at 

(1K per % of     )!

C(x)T
t

= {k(x, T )T
x

}
x



The combination of two saddle-node bifurcations can create a hysteresis 
phenomenon (an S-shaped curve) :!
!
!
!
!
!
!
!
!
!

                             : the top-left bifurcation!

                                                    : the bottom-right bifurcation!
!

5. Bistability and hysteresis 

unstable!

stable!

stable!



Elementary bifurcation problems for PDEs 
 
Problem 6: Compute the saddle-node bifurcation for the reaction-diffusion problem!
!
!

! !!
with suitable boundary conditions on the interval!

u
t

= ku
xx

+ µ(1� u2)

0  x  1.



Energy Balance Models (EBMs) 

2nd column:!
Budyko (1968, 1969)!
3rd column:!
Sellers (1969)!
!
In red:!
the “mixed” version of!
Held & Suarez (1974) 
and North (1975a, b)!

Budyko, Sellers and Held-Suarez-North 



Climate sensitivity to insolation in a 
General Circulation Model (GCM) 

"As stated in the Introduction, it is 
not, however, reasonable to conclude 
that the present results are more 
reliable than the results from the one-
dimensional studies mentioned 
above simply because our model 
treats the effect of transport explicitly 
rather than by parameterization."*!

"Nevertheless, it seems to be 
significant that both the one-
dimensional and three- dimensional 
models yield qualitatively similar 
results in many respects."*!

Area-mean temperatures for various model levels, as well as a mass-weighted mean 
temperature for the total model atmosphere. Based on 4 GCM runs: control, –4%, –2% 
and +4%. Units are in degrees K.!

* From Wetherald and Manabe, 1975, J. Atmos. Sci., 32, 2044–2059.!



Snowball Earth — Erstwhile a “theory”;
now a “fact”?

https://www.nsf.gov/news/news_images.jsp?cntn_id=116410&org=NSF



Double-well potential in 2-D!

1-D EBM of Budyko-Sellers-North, cf. Held & Suarez (Tellus, 1974); North et al. (JAS, 1979).!

which yields the variational principle:!

Taking                                  and                         ,!
We get the semi-linear parabolic PDE!

, where!

, and! .!



Distance to “tipping points”?!

Slightly modified 0-D EBM (Zaliapin & Ghil, NPG, 2010)!

is the ice-margin temperature,!
while     is an extra “Budyko-vs.-Sellers” parameter!
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w  Tipping points and bifurcations: multiple equilibria and!
!rapid transitions between them.!

w  Prediction of the transitions? To follow.!
w  Transitions between more general types of behavior — limit 

cycles, strange attractors — likewise to follow.!
!
!
!

Concluding remarks, I 
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THE MATHEMATICS 
OF CLIMATE AND 
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Website

http://www.ihp.fr/fr/CEB/T3-2019

When: Sept. 9 – Dec. 13, 2019
Where: Institut Henri Poincaré, 

Latin Quarter, Paris

Ø One-week tutorial at Cargèse,
Corsica, Sept. 9–14, 2019.

Ø 3 mini-courses of 2-3 weeks each; 
each course is followed by a
one-week workshop, all at IHP.

Ø See topics on poster.

Ø Dedicated office space for visitors. 



Reserve slides 



Bilan radiatif
Moyenne annuelle

L’équilibre à long terme entre le rayonnement entrant 
(solaire, ultra-violet et visible) et le rayonnement sortant 
(terrestre, infra-rouge) domine le climat.

S.C. = 1370 Wm-2 ± 2 Wm-2

Solar Constant

3

4
22




