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Overall Outline

* Lecture I: Observations and planetary flow theory (GFD(*))
 Lecture ll: Atmospheric LFV®") & LRF()
=) Lecture lll: EBMs®), paleoclimate & “tipping points”
« Lecture IV: Nonlinear & stochastic models —RDS(*)
« Lecture V: Advanced spectral methods—-SSA® et al.
* Lecture VI: The wind-driven ocean circulation

(¥) GFD = Geophysical fluid dynamics
() LFV = Low-frequency variability

(*) LRF = Long-range forecasting

+) EBM = Energy balance model

(*) RDS = Random dynamical system

(£) SSA = Singular-spectrum analysis



Composite spectrum of climate variability

Standard treatement of frequency bands:
1. High frequencies — white noise (or “colored”)
2. Low frequencies — slow evolution of parameters
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CONCEPTUAL MODEL of Earth System process operating on timescales of decades to centuries
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Climate models (atmospheric & coupled) : A classification

» stationary, (quasi-)equilibrium
= transient, climate variability

e Space

= 0-D (dlmenSIM O Radlatlve Convective Model(RCM)
=1-D

. Energy Balance Model (EBM)
vertical

latitudinal
= 2-D ﬁ

horizontal
meridional plane
= 3-D, GCMs (General Circulation Model)
» Simple and intermediate 2-D & 3-D models

- Coupling
» Partial
unidirectional
asynchronous, hybrid
= Full

= Hierarchy: back-and-forth between the simplest and the most elaborate model,
and between the models and the observational data



Motivation

 There’s a lot of talk about “tipping points.”

|t sounds threatening, like falling off a cliff: that’s why we care!

e But what are they, and what do we know about them?

 Here’s a disambiguation page (cf. Wikipedia), first.

e Sociology: “the moment of critical mass, the threshold, the boiling
point” (Gladwell, 2000); a previously rare phenomenon becomes rapidly
and dramatically more common.

e Physics: the point at which a system changes from a stable equilibrium
into a new, qualitatively dissimilar equilibrium (throwing a switch, tilting a
plank, boiling water, etc.).

e Climatology: “A climate tipping point is a somewhat ill-defined concept
[...]”— so we’ll try to actually define it better.
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« Catastrophe theory: branch of bifurcation theory in the study of dynamical
systems; here, a tipping point is “a parameter value at which the set of
equilibria abruptly change.” = Let’s see!

M. Gladwell (2000) The Tipping Point: How Little Things Can Make a Big Difference.
T. M. Lenton et al. (2008) Tipping elements in the Earth's climate system, PNAS, v. 105.



Rotating Convection: An lllustration

TYPICAL FLOWS AND
REGIME DIAGRAM
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Outline, Tipping Points |
Elementary Bifurcation Theory and Variational Principle
1. Fixed Points
— linear stability
— non-linear stability and attractor basins
2. Saddle-node bifurcations
— multiple branches of stationary solutions
— linear stability
3. Bifurcations in 1-D
4. Non-linear stability and variational principle
— variational principle in 0-D
— variational principle in 1-D
5. Bistability and hysteresis



1. Fixed points, |

We start with a scalar ordinary differential equation (ODE)

z = f(x;p)
depending on the parameter L.

Linear stability, ¢t = 1 I %
f(CUO) =0=2x=0= x =29 - Fixed point (FP)

Consider an initial perturbation at t = ():
2(0) = zo + £(0),
b=do+E=¢
= f(zo+&) = f(z0) + f'(20)§ + O(£?)

For an infinitesimal perturbation § (p) = &0
= f(w0)§, [fl(wo) =X, &= A,
= {(t) = eM¢(0)



1. Fixed points, Il

If A < 0 = the fixed point (FP) is (linearly) stable
If A\ > 0= the FP is (linearly) unstable
If A\ = () = the linear stability of the FP is neutral

Some basic features on FPs:
1. [ € Ch f # 0 on all sub-intervals: FPs are isolated (generic property)

2. Basins of attraction are open intervals (possibly semi-infinite)

f

S




2. Saddle-node bifurcations

How does the geometry of the solutions change when [t = l1o, i.e. how do the
number of the stability of the stationary solution change?

Let us start with the scalar case.

A simple case: the saddle-node

i =p—a? = fla;p) FPs:  p—a?=0 o=+0

FP stability: 1 stable v Upper branch
T1 =/l To1 =/l (linearly) stable
2(0) = 241 + £(0) I ,
sy | . 1
S +4 W - 1 Lower branch
A = fl(241) = =204 = T2/t unstable 1" - (linearly) unstable

Let us now examine the nonlinear stability



3. Bifurcations in n-D

We studied the scalar case (n = 1). More generally, we have:

x = f(x;p), feCR"xR), with x € 1™ and 1 € K.

The behavior is "almost" linear in all the phase-parameter space R x I, exceptin
the neighborhood of a few isolated points (.., 1. ) : these are bifurcation points,
where the Jacobian matrix [, — (afi/aiﬁj) is singular, i.e.det L = 0

In the case n = 2, we can reduce to the normal form :

o 2
T1 = W — X7

To = —ATa, A >0

In the general case, the reduction gives :

T1 = b — x% This shape explains the “saddle-

di= —Nzg, N >0, i=2,...n node bifurcation” terminology



4. Non-linear stability and variational principle

To deepen our understanding of stability, we have to examine the effect of
larger perturbations. A

a) Variational principle in 0-D
Vi) =— / f(&)dé — pseudo-potential
i = f(r) = —V'(2)

- _8_‘/8_3: — _V X
Ox Ot
V' will decrease along the ODE'’s trajectory as long as :
T A0V #£0 Vi

x = 0 if V reaches a minimum, a maximum, or a saddle-point.

Of course, only V' = man is stable — nonlinearly.
With this result, we turn back to the saddle-node bifurcation:
T = — x*

V(s p) = —pa + 27 /3 4 c(p)




5. Bistability and hysteresis

The combination of two saddle-node bifurcations can create a hysteresis

phenomenon (an S-shaped curve) :
'

stable

—d

~ . _ unstable M
— ‘~ —
-~
~

stable

T =l — z° :the top-left bifurcation

. Lo . . .
t=(u—1)+ (zr+ 5) : the bottom-right bifurcation



Outline, EBMs

Energy Balance Models (EBMs)

1.

Radiation Balance
— 0-D
— 1-D in the meridional direction

. EBMSs, formulation and analysis

— formulation in 0-D and 1-D
— linear stability in 0-D and 1-D

. Bifurcations in 0-D and 1-D
. Nonlinear stability and variational principle

— variational principle in 0-D
— variational principle in 1-D

. Comparison with 3-D GCM
. Bistability and hysteresis



The mean atmospheric circulation

Direct Hadley circulation

Solar IR

radiation l | radiation

Q T I SRRe—— = —
1 }
l Window
Stove { j
_— e e W e s
Equator Poles

|dealized view of the
atmosphere’s global circulation.”

Observed circulation

__ _polar “cell’
- -

e = a )
T~ Ferrel cell (1856)
~ N

A

%Hadley cell (1735)

mirror
symmetry

surface
westerlies

surface
easterlies

Schematic diagram of the
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*From Ghil and Childress (1987), Ch. 4



(solar, ultra-violet + visible)
R, (terrestrial, infrared) R

out

Refs. [1] Egyptian scribe (3000 B.C.)":
“The Sun heats the Earth,” Roseftta stone, Il. 13=17.
[2] Herodotus (484 - cca. 425 B.C.)
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Earth’s Global Energy Budget

K.E. Trenberth, J.T. Fasullo & J. Kiehl, 2009,
Bull. Amer. Meteorol. Soc., 90(3), 311-323.
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Infrared Heat Loss 70 (67)

Incoming Solar Radiation 100
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Energy balance models (EBMs)

Problem 5. Compute the energy balance of Earth’s atmosphere.

References

1. Reserve slides to this lecture.

2. Ghil, M., and S. Childress, 1987: Ch. 10 in Topics in Geophysical Fluid Dynamics:
Atmospheric Dynamics, Dynamo Theory and Climate Dynamics,

Springer-Verlag, New York, 485 pp.

3. Liou, K.-N., 2002: An Introduction to Atmospheric Radiation, 2"¢ ed.,
Academic Press, 583 pp. (compare also 15t ed., 1980)
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Energy-balance models (EBMs)

(' — local calorific capacity

1" — local surface temperature
0T
CE — Rz' — RO + D R; — incident solar radiation

R,— terrestrial radiation towards space

D — heat redistribution ('diffusion’)

Comments:

1.C,R; ,R,and D have to be calculated
(“parameterized”) accordingto 7" = T'(x, t)

2. The model's main characteristic is R,

R, = Q(x) {1 — o, T)}

with o the local albedo.




0-D version (averaged over the globe)

C% — Ry — Ry = Q{1 — a(T)} — oT*m(T)

1" — average surface temperature
{ — time (in thousands of years) od
(? — incident solar flux

« — albedo x

(' — calorific capacity

o — Stefan—Boltzmann constant

m — greenhouse effect factor

Comments:

< depends on the ice and snow cover, on cloud cover, etc. (implicit variables). All is
parameterized as a function of the explicit variable 7.



0-D EBM, I: Model solutions

We wanttowrite T as: 1T =T(t;7T,Q,¢, ...)

Stationary solutions: Q{1 — a(T)} —oT* =0

a A 'y
ice R R

. noice

I
I
— > ! >
T ;‘3 T, T,\ T
deep freeze current climate

What happens if the sun “blinks” and /" — Tl + AT'?
We have to go back to the original equation, which depends on time.



0-D EBM, II: Stability condition

C&tT — RZ - RO — f(T) R R
4
Ri = Q{1 —o(T)} °
Ro =A + BT Ri

Weset T'=1T, 40 : |

T,
/(1) =0, I ZED N

F(T) = F(T)) + F'(T))0 + .. )

Let's define \; = f'(T})/c Comment: in the 1-D case A; — >\§-0);

A~ 1
00 = )\]9 = 0 = €>‘jt(9() J /C

If A\; < O stable;
if A; > 0 unstable.



0-D EBM, IlI: Changes in parameters

What happens if the insolation parameter u changes, i.e., the “solar constant”
changes? This may represent a change in solar luminosity, orbital parameters
or in the optical properties of the atmosphere.

<+ The model’s three
“climates” shift

in value and, possibly,
in number.

Energy




1-D version (‘classic’ EBM)

C(CC)Tt = Rz — Ro + D

T" — temperature Boundary conditions: 73.(0) = T,.(1) =0
T — latitudinal coordinate x = 0 Pole (North)

~

T(x)— the observed climate = 1 Equator

R; = Q(z){1 — af ok

= Q@){1 — blx) + 1T}, o

R, = cT*{1 — mtanh(c3T°)}

1
: T
sin =5

D = 9, sin 7"2—5’“’{;@(:,;) 4 kg (2)g(T)VT

Questions: 1. Stationary solutions (’climates’)?
2. Stability?
3. Perturbation & bifurcation? () — @) (u = 1)



The three climates of the 1-D model

2

T(K)

300

280

Present climate —— 240

“Deep freeze” or el ®
snow-ball Earth |

160 -

140 L | 1 | | | |
Pole 80 70 60 50 40 30 20 10 Eq. ¢(°N)




1-D EBM: Bifurcation diagram

390
C(x)T; = {k(x,T)T,}»
+uQo{l —afx, 1)} |
—g(T)oT*
T,=0at =01
300 —
(D 287.7 -
Te
@ 268.6 —
250 —
Climate sensitivity:
dT
/y — @ % 0.01 200 —
(1K per % of ()) 175.4 -
150 /

. —— ———



5. Bistability and hysteresis

The combination of two saddle-node bifurcations can create a hysteresis

phenomenon (an S-shaped curve) :
'

stable

—d

~ . _ unstable 7]
— ‘~ —
-~
~

stable

. 2
L =M= -the top-left bifurcation

= (p—1)+ (z+ %)2 : the bottom-right bifurcation



Elementary bifurcation problems for PDEs

Problem 6: Compute the saddle-node bifurcation for the reaction-diffusion problem

Uy = kgy + (1 — u?)
with suitable boundary conditions on the interval

0<zxz<1.



Energy Balance Models (EBMs)
Budyko, Sellers and Held-Suarez-North

10.2.

Table 10.1.

Heat Flux

R, = Q(1 - a(T))
Absorbed solar radia-
tion, as a function of

ice-albedo feedback

Energy-Balance Models (EBMs):

Multiple Equilibria 311
Comparison of Budyko's and Sellers' models.
Budyko Sellers
Step-function a]bedcngP;:;-fu:::ic: albedo
( ae T<T,, oL < 1y
a :j - ;. <
> R
| an' s e Ts | T-Ti
. o, - " - a)
"V > qm. M 7" Ty 1\4
T[ < TS vy va T2 -’ < z
R, 1

Ro

Outgoing IR

radiation

Linear, empirical

Stefan-Boltzmann law with

"’C ° ".
Horizontal

flux divergence

A+ BT greenhouse effect
K} ’ 6
~T 1 o tank T/
I {1 2 ta TD }
Newtonian cooling Eddy-diffusive
.(-1l‘3: - Y‘ '-. ‘“. - '-.T ¢

o

2nd column:
Budyko (1968, 1969)

3rd column:
Sellers (1969)

In red:
the “mixed” version of

Held & Suarez (1974)
and North (1975a, b)



Climate sensitivity to insolation in a
General Circulation Model (GCM)

"As stated in the Introduction, it is T (p) vs % SOLAR CONSTANT

not, however, reasonable to conclude ' ::s::u
that the present results are more Yootel
reliable than the results from the one- T 1500 mb]
dimensional studies mentioned

above simply because our model R

treats the effect of transport explicitly

rather than by parameterization.™ p—

TEMPERATURE SCALE

"Nevertheless, it seems to be
significant that both the one-
dimensional and three- dimensional
models vyield qualitatively similar !
results in many respects."*

2839

| | |

1
A% -2% 0 2%

Area-mean temperatures for various model levels, as well as a mass-weighted mean
temperature for the total model atmosphere. Based on 4 GCM runs: control, —4%, —2%
and +4%. Units are in degrees K.

* From Wetherald and Manabe, 1975, J. Atmos. Sci., 32, 2044—2059.



Snowball Earth — Erstwhile a “theory”;
now a “fact”?

Ancother theory: glaclations patchy, short

https://www.nsf.gov/news/news_images.jsp?cntn_id=116410&org=NSF



Double-well potential in 2-D

1-D EBM of Budyko-Sellers-North, cf. Held & Suarez (Tellus, 1974); North et al. (JAS, 1979).

Taking © = sin(latitude)and k(x,T) = ko,
We get the semi-linear parabolic PDE

OTy = [ko(1 — 2*)Tele + Q(@)[1 — a(T)] — I(T)
which yields the variational principle:

F{T(x)} = /{%ko(l — 2)T? — Q(x)A(T) + R(T)} dx, where

T T

A(T) = / 1 —a(T)]dT,and R(T) = / I(T)dT.
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Distance to “tipping points”?

Slightly modified 0-D EBM (Zaliapin & Ghil, NPG, 2010)

T = puQo(1 — a(T)) — oT*1 — mtanh((T/Tp)°)]

| — tanh[s(T — T.
&(T;%):Cl+62 i [H( )]

2

T, is the ice-margin temperature,
while k is an extra “Budyko-vs.-Sellers” parameter
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Concluding remarks, |

+ Tipping points and bifurcations: multiple equilibria and
rapid transitions between them.
+ Prediction of the transitions? To follow.

+ Transitions between more general types of behavior — limit
cycles, strange attractors — likewise to follow.
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uncertainty quantification
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modeling and model hierarchies
December 2nd to 6th, 2019
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