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Overall Outline

* Lecture I: Observations and planetary flow theory (GFD(*))
=) Lecture Il: Atmospheric LFV() & LRF()

 Lecture lll: EBMs™), paleoclimate & “tipping points”

« Lecture IV: Nonlinear & stochastic models —RDS(*)

« Lecture V: Advanced spectral methods—-SSA® et al.

* Lecture VI: The wind-driven ocean circulation

(¥) GFD = Geophysical fluid dynamics
() LFV = Low-frequency variability

(*) LRF = Long-range forecasting

+) EBM = Energy balance model

(*) RDS = Random dynamical system

(£) SSA = Singular-spectrum analysis



Lecture ll: Atmospheric Low-Frequency
Variability (LFV) & Long-Range Forecasting (LRF)

Outline
1. Observations of persistent anomalies
— Blocked & zonal flows
Characteristics of persistent anomalies

2. The deterministic chaos paradigm
— Forced dissipative systems
— Succesive bifurcations
— Predictability and prediction

3. “Waves” vs. “particles”
— Multiple regimes & Markov chains
— Oscillatory modes & broad spectral peaks
— Which one is it & how does that help?



Lecture Il: Outline
1. Observations of persistent anomalies

— Blocked & zonal flows



“Limited-contour” analysis for atmospheric
low-frequency variabili

10-day sequences of S ‘
subtropical jet paths:
blocked vs. zonal
flow regimes
Kimoto & Ghil, JAS, 1993a e b e e P e 2

of the paneds (see 1ex1 for detmds)



Zonal Flow
13—-22 Dec. 1978

Transitions Between Blocked and Zonal Flows
in a Barotropic Rotating Annulus with Topography

Blocked Flow
10-19 Jan. 1963
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Fig. 1. Atmospheric pictures of (&) zonal and (B} blocked flow, showing
contour plots of the height {m) of the 700-hPa (700 mbar) surface, with a
contour interval of 60 m for both panels. The plots were obtained by averag-
ing 10 days of twice-daily data for (&) 13 to 22 December 1978 and (B) 10 to
19 January 1963, the data are from the National Oceanic and Atmospheric

Administration's Climate Analysis Center. The nearly zonal flow of (&) includes
quasi-stationary, small-amplitude waves (32). Blocked flow advects cold
Arctic air southward over eastern North America or Europe, while decreasing
precipitation in the continent's western part (26).

Weeks, Tian, Urbach, Ide, Swinney, & Ghil (Science, 1997)



Lecture Il: Outline

1. Observations of persistent anomalies

— Characteristics of persistent anomalies



Characteristics of intraseasonal variability
(~ atmospheric LFV)

1. Geographically fixed appearance and regional character ()
(“teleconnections” — Wallace & Gutzler, 1981)

2. Persistence

(persistent anomalies — Dole, 1982, 1986; Horel, 1985)
3. Recurrence

(multiple regimes — Mo & Ghil, 1987, 1988; Kimoto & Ghil, 1993a,b)
4. Barotropic structure

( barotropic, or 39, adjustment; see next page)

) but Branstator (1987) & Kushnir (1987), 25-day hemispheric wave;
Benzi et al., 1984 +, hemispheric bimodality;
Wallace, Thompson & co. — Arctic Oscillation.



Barotropization
— barotropic (3rd) adjustment()

(a) statistical theory of turbulence
(Charney, 1971; Rhines, 1979; Salmon, 1980)

(b) evolution of baroclinic eddies & "wave maker”
(Hoskins & Simmons, 1978; Green-lllari-Shutts)

(c) external Rossby wave, & its instability
(Held-Panetta-Pierrehumbert, 1985-87)

()After hydrostatic (1st) and baroclinic (2nd) adjustment.



Lecture Il: Outline
1.

2. The deterministic chaos paradigm

— Forced dissipative systems



Forced dissipative systems

Most fluid dynamical problems — and many other problems
in biology, chemistry, and continuum physics —
lead to ODEs (or equivalent PDES) of the form

Cl.ﬁz' — Uik LjLL —bz-ja:j—i—cz-, 1= 1,2,...,N. (FD)

Here we used the summation convention for repeated indices. In fluid-flow
problems, the quadratic terms in (FD) above represent the nonlinear advection

term /. V. Thisterm is associated with the Jacobian in the QG equation.

The above equation is autonomous and it has unique solutions for all initial data
(ID) x(0) = x,; these solutions depend continuously on the ID, x = x(t; x;).

When the solutions exist for all times, — © <t < (), then Egs. (FD) define a
differentiable dynamical system (DDS). In partlcular we shall assume that

this system is forced, cc;# 0, and dissipative, b;;jx;x; > 0.

N.B. The quadratic terms are necessarily energy conserving if Qijk = —Qik;j-
and the orbits of (FD) describe a flow in the phase space of {x, i=1, ..., N}..

()Counterexample. The solutions of & = x* are unique and depend

continuously on x, but they blow up at = 1!



Lecture Il: Outline
1.

2. The deterministic chaos paradigm

— Succesive bifurcations



Flow patterns and the regime diagram

Successive transitions from higher to lower symmetry of the flow pattern, in space and time,
as the rotation rate Q increases: from steady-state, axisymmetric (Hadley regime),

via purely periodic in space and time (steady waves, Rossby regime) and doubly-periodic
vacillation (amplitude, shape), on to irregular, quasi-geostrophic (QG) turbulence.
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Regime diagram — experimental

For a fixed apparatus (height D, gap width L = b—a) and fluid (expansion coefficient a, viscosity v),
one can change the rotation rate Q and the temperature difference AT = T,—T,. As Q increases,
we move along a given straight, downward-slanting diagonal, to the right and down; as AT
increases, we move from one diagonal to another, to the right and up. The heavy contours
represent sharp transitions from one regime to another one. These transitions are now

associated with bifurcations.

Amplitude vacillation Tilted-trough vacillation



Lorenz (1963b) model: Mechanics of vacillation

L orenz was motivated by the

atmospheric index cycle (
(Rossby, 1939; Namias, 1950), upper | L. Vs

but clearly inspired by the 2 e _———____k..h,
rotating annulus results. y

. lower | v
It is the latter that he was i layer X T-o V-7
X . 2k, , 2h,

modeling in this paper; see also 7
Lorenz (1967).

With f = const., g(x,y) the horizontal mean of g, and o(x,y,t) = &(t) one has

.

OV /ot = —J(, V) — J(1,V*T) ,

OV3r /ot = —J(, V1) — J(1,V*) +fV3x, (L63b)
oT /ot = —J(,T) +oV3y,
05 |0t = —TV?2x.

Here J(g,h) = gzhy, — gyh, is the Jacobian and the thermal wind equation
V2T = AV?T closes the system (L63b), with A depending on the fluid.



Regime diagram — simplified

Lorenz (1963b) studied a
truncated model of 14 ODEs.
He essentially obtained the
first few bifurcations, up to

and including the quasi-periodic,
vacillation regime. Beyond that,
the low-order truncation
prevents one from reaching
the QG turbulence.

Today, such studies can be
carried out on the full system
of high-resolution equations.

logH

O\
a: purely periodic
Rossby regime (waves)
e - T
b: quasi-periodic

 Hadley R VS
regime (AT =~
(axi- T
symmetric): QG turbulence:
stationary aperiodic




General idea Bifurcation diagram

As we push the system harder, General situation
. . . = N(u°‘u)
it responds by coming up with e = N
P y gup N(uyspo) = 0.
more Comp|ex responses, i_e_, 1) If L,= N/ou at (u,;u,) is nonsingular,
_ . then a unique branch of solutions u = u(u) through it
it loses symmetry In both exists and is given by u = u, + (aula,u)|u= u,.
. . - H=Ho
time & space. In time, it may go c
from being in steady state to B SV
v A i

being periodic and then gtas
chaotic; in space, it often goes

______ R,
from being homogeneous to z

periodic and then to irregular.

thus, the two kinds of symmetry 2) The points at which det L, = 0 (i.e., where the Implicit

loss are interrelated. Function Theorem fails) are called bifurcation points,
and they are in general isolated. Near such points, the
behavior of (2 or more) solutions is parabolic:

-ty ~ (U - o)



Lorenz (1963b) model: Mechanics
of vacillation — Index cycle and
Shape vacillation

» The model reproduces certain observed
aspects of the atmospheric index cycle:
latitudinal displacement but not intensity

variations.

» It also reproduces certain aspects of tilted-
trough (or shape) vacillation in the rotating,
differentially heated annulus.




Rotating annulus & Earth’s atmosphere

Tropics
(Hadley
cell)

Rb

Midlatitudes
(Ferrell cell)

T

>
log T
Or why doesn’t the Hadley cell on Earth extend to the poles,

like on Venus ?

77

Tropics : both f (i.e., Q)

and AT small

1.0

I Midlatitudes : both Q
and AT large

H° bo* BN laf



Dynamical systems and comparative planetology, Il

mid-latitudes
(Ferrell cell)

T
Earth

=
logT

The tentative place of Earth, Mars, Venus & Titan in this scheme of things



GFD, bifurcations and chaos

Problem 3: Read the paper listed below and report to the class on its contents.

Ghil, M., P. L. Read and L. A. Smith, 2010: Geophysical flows as dynamical systems:
The influence of Hide’s experiments, Astron. Geophys., 51(4), 4.28-4.35



Calm in the face of chaos ...-

4




Calm in the face of chaos ...-
But just wait till we bring

in randomness, too!




Lecture Il: Outline
1.

2. The deterministic chaos paradigm

— Predictability and prediction



Prediction and Predictability

Rll

1. Easiest to predict:
constant phenomena
e.g., the radius of the Earth R -
only need 1 number

2. A little harder:
periodic phenomena
e.g., sunrise, tides — only need 3 numbers :
period, amplitude & phase.

3. Even harder:
multi-periodic phenomena
e.g., celestial mecanics —
need (finitely) many numbers

4. Hardest:
aperiodic phenomena
e.g., thermal convection, weather —
infinitely many numbers

= The more complex the phenomenon, the harder it is to predict.



The Lorenz convection (1963a) model
— some numerical solutions

r 2nd EOF
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Plot of Y = Y({) + projections
onto the (X)Y) & (Y, 2) planes

Both for the canonical “chaotic” values p =28, 0 =10, 3 = 8/3.

Trajectory in phase space



The Lorenz (1963a) convection model

Problem 4: Find the appropriate software to compute the statistics
of the Lorenz “butterfly” — e.g., pdf, EOFs —and use it to do so.

Glossary
pdf = probability density function
EOF = empirical orthogonal function



Lecture Il: Outline
1.

3. “Waves” vs. “particles”

— Multiple regimes & Markov chains



Coarse-graining Markov-chain description of LEV

1. Reduce the number of
degrees of freedom to the
most important ones —
highest
variance.

2. Describe the
dynamics in this
reduced subspace.

No. of
evenls

No, of

evenls

- o
Tz Duration Tg Duration

(b) (¢)



Multiple Flow Regimes

A. Classification schemes
1) By position
(i) Cluster analysis
— categorical
— NH, Mo & Ghil (1988, JGR) — fuzzy
— NH + sectorial, Michelangeli et al. (1995, JAS) — hard (K—means)
— hierarchical
— NH + sectorial, Cheng & Wallace (1993, JAS)
(i) PDF estimation
— univariate
— NH, Benzi et al. (1986, QJRMS); Hansen & Sutera (1995, JAS)
— multivariate
— NH, Molteni et al. (1990, QJRMS); Kimoto & Ghil (1993a, JAS)
— NH + sectorial, Kimoto & Ghil (1993b, JAS);
Smyth et al. (1999, JAS)

After Ghil & Robertson (2002, PNAS)



Multiple Flow Regimes (continued)

A. Classification schemes (continued)

2) By persistence

(iii) Pattern correlations
— NH, Horel (1985, MWR)
— SH, Mo & Ghil (1987, JAS)
(iv) Minima of tendencies
— Models: Legras & Ghil (1985, JAS); Mukougawa (1988, JAS);
Vautard & Legras (1988, JAS)
— Atlantic- European sector : Vautard (1990, MWR)

B. Transition probabilities
(i) Model & NH — counts (Mo & Ghil, 1988, JGR)
(i) NH & SH — Monte Carlo (Vautard et al., 1990, JAS)

After Ghil & Robertson (2002, PNAS)



MUItiple Flow @) W REGINE COMPOSITE M= 249 D)  wn recine composite u=rzo4
Regimes *'bj@ RNA .-
— lowest common -
denominator, | P

Four regimes:
blocked vs. zonal,

in the Pacific—North-
American (PNA) & the
Atlantic-European
sector, respectively

(Kimoto & Ghil,
JAS, 1993a)




Multiple Flow
Regimes

— lowest common
denominator, Il

Cheng & Wallace

(JAS, 1993; CW) &.

Smyth, Ghil & Ide

(JAS, 1997, SGI) agree

well on 3 of the 4 regimes

in Kimoto & Ghil

(JAS, 1993a; KG):

A — Gulf of Alaska ridge ~
KG’s RNA

G — high over Greenland ~
KG’s PNA

R — enhanced ridge over
Rockies ~ BNAO

SGl’s sectorial analyses
also find KG’s ZNAO to
be quite robust.




Slagidne): 2 wziradlegm of oarsisiant znamzly

‘Bauer; NamiaSSRexsand
many others'noticedithe
recurrenceand |
persistence of blocking: ™
J. Charney decided to go

beyond “talking about it,”

and actually “do
something about it.”




Transitions =:=1/2:0)
Blocked 1</ Zonal - o/
In"a’RotatingfAnnulusiwithaliopography.
Zonal Flow Blocked Flow

Wﬁ 5 Pis

Fig. 1. Atmospheric pictures of (&) zonal and (B) blocked flow, showing Administration's Climate Analysis Center. The nearly zonal flow of (&) includes
contour plots of the height {m) of the 700-hPa 700 mbar) surface, with a quasi-stationary, small-amplitude wawves (32). Blocked flow adwvects cold
contour interval of 50 m for both panels. The plots were obtained by averag- Arctic air southward owver eastern Morth America or ELrope, while decreasing
ing 10 days of twice-daily data for (&) 13 to 22 December 1978 and (B) 10 to precipitation in the continent's western part (25).

19 January 1963, the data are from the Mational Oceanic and Atmospheric
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A 10y meelell ifor
olfexelinie) s, Zonizll ko
»~ Quasi-geostrophicilowiinia
mid-latitude’3-channe
with 3-mode truncation™

a) Bifurcation diagram

(s)

(zonal + 1 wave).

» Topographic resonance b) Flow paierns

leads to multiple
equilibria: zonal + blocked.

» Much criticized as
“unrealistic.”




A little detour via the “barotropic” annulus
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Lecture Il: Outline
1.

3. “Waves” vs. “particles”

— Oscillatory modes & broad spectral peaks = Lecture V



Lecture Il: Outline
1.

3. “Waves” vs. “particles”

— Which one is it & how does that help?



Waves vs. Particles:

"Waves vs. Particles"
A Pathwa y to in Atmospheric Low-Frequency Variability

1. Are the regimes but slow phases of the oscillations?

Prediction?

B PNA

oo Kimoto & Ghil
Is predicting as hard (JAS, 1993a, b)
as it is claimed to be? Z BNAO RNA

2. Are the oscillations but instabilities of particular equilibria?

@ Legras & Ghil
(JAS, 1985)
» oL

~d 1%
3 . .
3. How about both: "chaotic itinerancy" (Itoh & Kimoto, JAS, 1999)

4. How about neither? Null hypotheses:

a) It’s all due to interference of linear waves, e.g.,
neutrally stable Rossby waves;

Lindzen et al.
z z (JAS, 1982)

B

b) It’s all due to red noise — Hasselmann (7ellus, 1976),

Mitchell (Quatern. Res., 1976), Penland & co. (Magorian,
Based on Ghil & Robertson (2002) Sardeshmukh, 1990s).



Waves vs. Particles:
A Pathway to

Prediction?

Is predicting as hard

as it is claimed to be?

No, it’s actually quite easy:
Just flip a coin or roll a die!
What'’s difficult, though, is

g,m(oa/
trusting the prediction ™

Based on Ghil & Robertson (2002)

"Waves vs. Particles"
in Atmospheric Low-Frequency Variability

1. Are the regimes but slow phases of the oscillations?

B PNA
Kimoto & Ghil
(JAS, 1993a, b)
z BNAO RNA

2. Are the oscillations but instabilities of particular equilibria?

@} Legras & Ghil
(JAS, 1985)
oL

3. How about both: "chaotic itinerancy" (Itoh & Kimoto, JAS, 1999)

4. How about neither? Null hypotheses:

a) It’s all due to interference of linear waves, e.g.,
neutrally stable Rossby waves;

Lindzen et al.
Z CU Z (JAS, 1982)
B
b) It’s all due to red noise — Hasselmann (7ellus, 1976),

Mitchell (Quatern. Res., 1976), Penland & co. (Magorian,
Sardeshmukh, 1990s).



Waves vs. Particles:
A Pathway to

Prediction?

Is predicting as hard

as it is claimed to be?

No, it’s actually quite easy:
Just flip a coin or roll a die!
What'’s difficult, though, is

WO
trusting the prediction ™

That's where a little
understanding of what we're
trying to predict helps!

Based on Ghil & Robertson (2002)

"Waves vs. Particles"
in Atmospheric Low-Frequency Variability

1. Are the regimes but slow phases of the oscillations?

B PNA
Kimoto & Ghil
(JAS, 1993a, b)
z BNAO RNA

2. Are the oscillations but instabilities of particular equilibria?

@ Legras & Ghil
(JAS, 1985)
oL

3. How about both: "chaotic itinerancy" (Itoh & Kimoto, JAS, 1999)

4. How about neither? Null hypotheses:

a) It’s all due to interference of linear waves, e.g.,
neutrally stable Rossby waves;

Lindzen et al.
Z CU Z (JAS, 1982)
B
b) It’s all due to red noise — Hasselmann (7ellus, 1976),

Mitchell (Quatern. Res., 1976), Penland & co. (Magorian,
Sardeshmukh, 1990s).
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Reserve slides



Lecture I: Outline

1. General introduction and bibliography
— Scale dependence of atmospheric & oceanic flows
— Turbulence & predictability

2. Basic facts of large-scale atmospheric life
— The atmospheric heat engine

— Shallowness
— Rotation

3. Flow regimes, bifurcations & symmetry breaking

— The rotating, differentially heated annulus

— Regime diagram & transitions



Lecture Il: Outline
1. Observations of persistent anomalies

— Blocked & zonal flows

— Characteristics of persistent anomalies

2. The deterministic chaos paradigm
— Forced dissipative systems
— Succesive bifurcations

— Predictability and prediction
3. “Waves” vs. “particles”

— Multiple regimes & Markov chains
— Oscillatory modes & broad specitral peaks

— Which is one is it & how does that help?





