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• Lecture I: Observations and planetary flow theory (GFD(⌘))
• Lecture II: Atmospheric LFV(*) & LRF(**)

• Lecture III: EBMs(+), paleoclimate & “tipping points”
Lecture IV: Nonlinear & stochastic models—RDS(v)

• Lecture V: Advanced spectral methods–SSA(±) et al.
• Lecture VI: The wind-driven ocean circulation

Overall Outline

(⌘) GFD = Geophysical fluid dynamics
(*) LFV = Low-frequency variability
(**) LRF = Long-range forecasting
(+) EBM = Energy balance model
(v) RDS = Random dynamical system
(±) SSA = Singular-spectrum analysis



•  The climate system is highly nonlinear and quite complex."
•  The systemʼs major components — the atmosphere, oceans, 

ice sheets — evolve on many time and space scales. "
•  Its predictive understanding has to rely on the systemʼs 

physical, chemical and biological modeling, "
"but also on the thorough mathematical analysis of the models "
"thus obtained: the forest vs. the trees."

•  The hierarchical modeling approach allows one to "
"give proper weight to the understanding provided by the"
"models vs. their realism: back-and-forth between "
!“toy” (conceptual) and detailed (“realistic”) models, "
"and between models and data."

•  How do we disentangle natural variability from the 
anthropogenic forcing: can we & should we, or not?!



Climate	
  and	
  Its	
  Sensi&vity	
  
Let’s say CO2 doubles:

How will “climate” change?

 
    Ghil (in Encycl. Global Environmental  
    Change, 2002)

2. Climate is purely periodic;
    if so, mean temperature will
    (maybe) shift gradually to its
    new equilibrium value. 
    But how will the period, amplitude
    and phase of the limit cycle change?

1. Climate is in stable equilibrium
    (fixed point); if so, mean temperature
    will just shift gradually to its new 
    equilibrium value.

3. And how about some “real stuff” 
    now: chaotic + random?
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•  The IPCC process: results and uncertainties"
•  Natural climate variability as a source of uncertainties"

–  sensitivity to initial data  error growth"
–  sensitivity to model formulation  see below!"

•  Uncertainties and how to fix them"
–  structural stability and other kinds of robustness"
–  non-autonomous and random dynamical systems (NDDS & RDS)"

•  Two illustrative examples"
–  the Lorenz convection model"
–  an El Niño–Southern Oscillation (ENSO) model "

•  Linear response theory and climate sensitivity  
•  Conclusions and references"
"  – natural variability and anthropogenic forcing: the “grand unification”"
"  – selected bibliography"





Greenhouse gases (GHGs) go up,"
temperatures go up:"

τκ,0

It’s gotta do with us, at least a bit, 
doesn’t it? 

Wikicommons, from "
Hansen et al. (PNAS, 2006); "
see also http://data.giss.nasa.gov/
gistemp/graphs/"



Unfortunately, thingsUnfortunately, things
arenaren’’tt  all all that easy!that easy!

Ghil, M., 2002: Natural climate variability, 
in Encyclopedia of Global Environmental 
Change, T. Munn  (Ed.), Vol. 1, Wiley

What to do?

Try to achieve better
interpretation of, and
agreement between,
models …
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Temperatures rise: 
•  What about impacts? 
•  How to adapt? 

Source : IPCC (2007), 


AR4, WGI, SPM  

The answer, my friend, 
is blowing in the wind, 
i.e., it depends on the  
accuracy and reliability 
of the forecast … 



Global	
  warming	
  and	
  	
  	
  
its	
  socio-­‐economic	
  impacts–	
  II	
  	
  

Temperatures	
  rise:	
  
•  What	
  about	
  impacts?	
  
•  How	
  to	
  adapt?	
  

Source : IPCC (2013), #
#AR5, WGI, SPM  

AR5 vs. AR4 
 A certain air of déjà vu: 
 GHG “scenarios” have been 
 replaced by “representative 
 concentration pathways” (RCPs), 
 more dire predictions, 
 but the uncertainties remain. 
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Courtesy Tim Palmer, 2009"



The classical view of dynamical 
systems theory is:"

positive Lyapunov exponent  "
    trajectories diverge exponentially"

But the presence of multiple "
    regimes implies a much "
    more structured behavior "
    in phase space"

L. A. Smith (Encycl. Atmos. Sci., 2003)"

Still, the probability distribution  "
    function (pdf), when calculated "
    forward in time, is pretty "
    smeared out 



So whatSo what’’s it s it gonna gonna be like, by 2100?be like, by 2100?
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The uncertainties 


might be intrinsic, 


rather than mere


“tuning problems”


If so, maybe

stochastic structural 

stability could help!


The DDS dream of structural stability (from Abraham  & Marsden, 1978)


Might fit in nicely with

     recent taste for 

“stochastic 

     parameterizations” 



Consider the scalar, linear ordinary differential equation (ODE)!

The autonomous part of this ODE, ! !               is dissipative !
and all solutions ! ! ! ! ! ! ! !   converge to 0 as !

A linear, dissipative, forced example: forward vs. pullback attraction !

ẋ = −αx+ σt , α > 0 , σ > 0 .
ẋ = −αx ,

t → +∞ .x(t;x0) = x(t;x(0) = x0)

x(s, t;x0) = x(s, t;x(s) = x0) ,

s → −∞ ,

What about the non-autonomous, forced ODE? As the energy being put into the system 
by the forcing is dissipated, we expect things to change in time. In fact, if we “pull back” 
far enough, replace x(t; x0) by !

and let ! ! ! we get the !
pullback attractor a = a(t) !
in the figure, !

a(t) =
σ

α
(t− 1

α
) .

4 2 0 2 4 6 8 10 12 14 16

200

150

100

50

0

50

100

150

200

t

x(s, t ; x0), with x0 varying

 

 

s1s2 t1 t2

a(t) = σ
α (t − 1

α )



Non-autonomous Dynamical Systems - II

Remarks
We’ve just shown that:

|x(t , s; x0)− a(t)| −→
s→−∞

0 ; for every t fixed,

and for all initial data x0, with a(t) = σ
α
(t − 1/α).

We’ve just encountered the concept of pullback attraction;
here {a(t)} is the pullback attractor of the system (1).

What does it mean physically?
The pullback attractor provides a way to assess an asymptotic regime
at time t — the time at which we observe the system — for a system
starting to evolve from the remote past s, s << t .

This asymptotic regime evolves with time: it is a dynamical object.

Dissipation now leads to a dynamic object rather than to a static one,
like the strange attractor of an autonomous system.

Michael Ghil Climate Change and Climate Sensitivity
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A little history of climate & stochasticity 
•  A. Einstein’s (1905) Brownian motion paper.!
•  K. Itō (prof. at Kyoto U., RIMS director) !
    formulates Itō calculus in 1942, enables solution !
    of stochastic differential equations (SDEs);!
    Itō’s lemma is the stochastic counterpart of!
    Leibniz’s chain rule for differentiation.!
•  K. Hasselmann (Tellus, 1976) describes climate!
    as Brownian motion, with weather !
    the stochastic driver.!
•  In this view, the deterministic part!
    of the model is stable, and random!
    perturbations decay to the mean.!
!
!

Kiyoshi Itō!
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Random Dynamical Systems (RDS), I - RDS theory

This theory is the counterpart for randomly forced dynamical
systems (RDS) of the geometric theory of ordinary differential
equations (ODEs). It allows one to treat stochastic differential
equations (SDEs) — and more general systems driven by noise
— as flows in (phase space)×(probability space).
SDE∼ODE, RDS∼DDS, L. Arnold (1998)∼V.I. Arnol’d (1983).

Setting:

(i) A phase space X . Example: Rn.

(ii) A probability space (Ω,F ,P). Example: The Wiener space
Ω = C0(R;Rn) with Wiener measure P.

(iii) A model of the noise θ(t) : Ω→ Ω that preserves the measure P, i.e.
θ(t)P = P; θ is called the driving system.
Example: W (t , θ(s)ω) = W (t + s, ω)−W (s, ω);
it starts the noise at s instead of t = 0.

(iv) A mapping ϕ : R× Ω× X → X with the cocycle property.
Example: The solution operator of an SDE.

Michael Ghil Climate Change and Climate Sensitivity
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RDS, III- Random attractors (RAs)
A random attractor A(ω) is both invariant and “pullback" attracting:

(a) Invariant: ϕ(t , ω)A(ω) = A(θ(t)ω).

(b) Attracting: ∀B ⊂ X , limt→∞ dist(ϕ(t , θ(−t)ω)B,A(ω)) = 0 a.s.

Michael Ghil Climate Change and Climate Sensitivity
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Random attractor of the stochastic Lorenz system

Snapshot of the random attractor (RA)

A snapshot of the RA, A(ω), computed at a fixed time t and for the
same realization ω; it is made up of points transported by the stochastic
flow, from the remote past t − T , T >> 1.

We use multiplicative noise in the deterministic Lorenz model, with the
classical parameter values b = 8/3, σ = 10, and r = 28.

Even computed pathwise, this object supports meaningful statistics.

Michael Ghil Climate Change and Climate Sensitivity



Sample measures supported by the R.A.

We compute the probability measure on the R.A. at some fixed time t ,
and for a fixed realization ω. We show a “projection”,

∫
µω(x , y , z)dy ,

with multiplicative noise: dxi=Lorenz(x1, x2, x3)dt + α xidWt ; i ∈ {1, 2, 3}.
10 million of initial points have been used for this picture!

Michael Ghil Climate Change and Climate Sensitivity



Sample measure supported by the R.A.

Still 1 Billion I.D., and α = 0.5. Another one?

Michael Ghil Climate Change and Climate Sensitivity



Sample measure supported by the R.A.

Sample measures evolve with time.
Recall that these sample measures are the frozen
statistics at a time t for a realization ω.

How do these frozen statistics evolve with time?

Action!

Michael Ghil Climate Change and Climate Sensitivity



 
 
 

 Michael Ghil 
 

		
A day in the life of the Lorenz (1963) model’s random attractor, or LORA for short;

see SI in Chekroun, Simonnet & Ghil (2011, Physica D) or 
Vimeo movie: https://vimeo.com/240039610
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Climate	
  and	
  Its	
  Sensi&vity	
  
Let’s say CO2 doubles:

How will “climate” change?

 
    Ghil (in Encycl. Global Environmental  
    Change, 2002)

2. Climate is purely periodic;
    if so, mean temperature will
    (maybe) shift gradually to its
    new equilibrium value. 
    But how will the period, amplitude
    and phase of the limit cycle change?

1. Climate is in stable equilibrium
    (fixed point); if so, mean temperature
    will just shift gradually to its new 
    equilibrium value.

3. And how about some “real stuff” 
    now: chaotic + random?
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Physically closed system, modeled  
mathematically as autonomous "
system: neither deterministic 
(anthropogenic) nor random 
(natural) forcing."

The attractor is strange, but still 
fixed in time ~ “irrational” number. "

Climate sensitivity ~ change in the 
average value (first moment) of the 
coordinates (x, y, z) as a parameter 
λ changes."



Physically open system, modeled 
mathematically as non-autonomous "
system: allows for deterministic 
(anthropogenic) as well as random 
(natural) forcing."

The attractor is “pullback” and 
evolves in time ~ “imaginary” or  "
                         “complex” number. "

Climate sensitivity ~ change in the 
statistical properties (first and 
higher-order moments) of the 
attractor as one or more  
parameters (λ, μ, …) change."

Ghil (Encyclopedia of Atmospheric 
!Sciences, 2nd ed., 2012)"





Parameter dependence – I 
It can be smooth or it can be rough:
Niño-3 SSTs from intermediate coupled model
for ENSO (Jin, Neelin & Ghil, 1994, 1996)

Skewness & kurtosis of the SSTs:
time series of 4000 years, 
	
  

	
   	
  	
  
	
   	
  	
  

	
  
	
  

M. Chekroun (work in progress)
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The Galanti-Tziperman (GT) model (JAS, 1999)!

Neutral delay-differential equation (NDDE),!
derived from Cane-Zebiak and Jin-Neelin!
models for ENSO: T is East-basin SST !

! ! !  and h is thermocline depth.  !

Seasonal forcing given by
µ(t) = 1 + �cos(ωt+ φ).
The pullback attractor and its
invariant measures were computed.

Figure shows the changes in the mean, 
2nd & 4th moment of h(t), along with the  
Wasserstein distance dW, for changes  
of 0–5% in the delay parameter        .   τκ,0

Note intervals of both smooth & rough dependence! 



How to define climate sensitivity or, 
What happens when there’s natural variability? 

One usually defines climate sensitivity γ as ΔT/ΔQ, 
where T is global mean temperature in 0C, 
and ΔQ is insolation change in %.
Thus γ ≈ 1 0C per 1 % change in Q.
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But there is much more to climate
than mean T : there is the actual 
distribution of temperatures in time
and space, there’s extrema of
temperatures and of precipitations,
etc., as in the figure.

So we would like a better,
more flexible definition, which
does take into account these “details,”
as well as chaotic behavior: 

� = @dW/@⌧ or

� = �dW/�⌧



How to define climate sensitivity or, 
What happens when there’s natural variability? 

This definition allows us to watch how “the earth moves,” as it is affected 
by both natural and anthropogenic forcing, in the presence of natural
variability, which includes both chaotic & random behavior:
chaotic + random behavior: 
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When it is smooth, one can optimize a GCMʼs single-parameter dependence!

   
   

ICTP AGCM (Neelin, Bracco, Luo, McWilliams & Meyerson, PNAS, 2010)!



Multi-objective algorithms avoid arbitrary weighting of criteria !
!in a unique cost function:!

   
   

ICTP AGCM (Neelin, Bracco, Luo, McWilliams & Meyerson, PNAS, 2010)!

Optimization algorithms that are  !O(N) and O(N2), rather than O(SN ),
where N is the number of parameters and S is the sampling density.
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Summary!
•  A change of paradigm from closed, autonomous systems!
"to open, non-autonomous ones.!

•  Random attractors are (i) spectacular, (ii) useful, and "
"(iii) just starting to be explored for climate applications."

Work in progress!
•  Study the effect of specific stochastic parametrizations "
"on model robustness."

•  Applications to intermediate models and GCMs."
•  Implications for climate sensitivity."
•  Implications for predictability?"



Lorenz (JAS, 1963)"
Climate is deterministic and autonomous,"
     but highly nonlinear."
Trajectories diverge exponentially, "
     forward asymptotic PDF is multimodal."

Hasselmann (Tellus, 1976)"
Climate is stochastic and noise-driven,"
     but quite linear."
Trajectories decay back to the mean, "
     forward asymptotic PDF is unimodal."



What do we know?!
•  Itʼs getting warmer."
•  We do contribute to it."
•  So we should act as best we know and can!"

What do we know less well?!
•     By how much?"

  – Is it getting warmer …"
  – Do we contribute to it …"

•     How does the climate system (atmosphere, ocean, ice, etc.) really work?"
•     How does natural variability interact with anthropogenic forcing?"
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The Lorenz (1963a) convection model  
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Galileo on math, science & opinions, 1 
La filosofia è scritta in questo grandissimo libro che continuamente ci sta 
aperto innanzi a gli occhi (io dico l'universo), ma non si può intendere se prima 
non s'impara a intender la lingua, e conoscer i caratteri, ne' quali è scritto. Egli 
è scritto in lingua matematica, e i caratteri son triangoli, cerchi ed altre figure 
geometriche, senza i quali mezzi è impossibile a intenderne umanamente 
parola; senza questi è un aggirarsi vanamente per un oscuro laberinto.!
G. Galilei, Il Saggiatore, VI, 232)!
!
Philosophy is written in this grand book — I mean the Universe—which stands 
continually open to our gaze, but it cannot be understood unless one first 
learns to comprehend the language and interpret the characters in which it is 
written. It is written in the language of mathematics, and its characters are 
triangles, circles and other geometrical figures, without which it is humanly 
impossible to understand a single word of it.!
!



Warming slow-down 

It was a wonderful encounter !
with some leading physicists!
and mathematicians, as well!
as with GFD & climate!
researchers, and with great!
students and post-docs. !
!It taught me, as Erice had done !
in March 1981, how well !
organized the SIF and Italians !
in general can be.!

But most of all, Michèle & I 
found out we’d be parents soon   



Galileo on math, science & opinions, 2 

Sì perché l'autorità dell'opinione di mille nelle scienze non val 
per una scintilla di ragione di un solo.!
In questions of science, the authority of a thousand is not worth 
the humble reasoning of a single individual. 
!
Galileo Galilei, Venere, Luna e Pianeti Medicei, !

! ! ! !e nuove apparenze di Saturno, p. 8/20!



Applications to a nonlinear stochastic El Niño model

Chekroun, Simonnet and Ghil, 2011

Timmerman & Jin (Geophys. Res. Lett., 2002) have derived the following
low-order, tropical-atmosphere–ocean model. The model has three variables:
thermocline depth anomaly h, and
SSTs T1 and T2 in the western and eastern basin.

Ṫ1 = −α(T1 − Tr )− 2εu
L (T2 − T1),

Ṫ2 = −α(T2 − Tr )− w
Hm

(T2 − Tsub),

ḣ = r(−h − bLτ/2).

The related diagnostic equations are:

Tsub = Tr − Tr−Tr0
2 [1− tanh(H + h2 − z0)/h∗]

τ = a
β
(T1 − T2)[ξt − 1].

τ : the wind stress anomalies, w = −βτ/Hm: the equatorial upwelling.

u = βLτ/2: the zonal advection, Tsub: the subsurface temperature.

Wind stress bursts are modeled as white noise ξt of variance σ,
and ε measures the strength of the zonal advection.

Michael Ghil Climate Change and Climate Sensitivity



Random attractors: the frozen statistics

Random Shil’nikov horseshoes

Horseshoes can be noise-excited,
left: a weakly-perturbed limit cycle, right: the same with larger noise.

Golden: most frequently-visited areas; white ’plus’ sign: most visited.

Michael Ghil Climate Change and Climate Sensitivity



An episode in the random’s attractor life

Michael Ghil Climate Change and Climate Sensitivity





It’s gotta do with us, at 
least a bit, ain’t it? 

But just how much? 

IPCC (2007)




www.lsecats.ac.uk  

Ed Tredger !
(PhD thesis, LSE, 2009)!

L.A. (“Lenny”) Smith (2009)!
personal communication !

AR4 adjustment of 20th century simulation 



RDS, II - A Geometric View of SDEs

ϕ is a random dynamical system (RDS)
Θ(t)(x , ω) = (θ(t)ω, ϕ(t , ω)x) is a flow on the bundle

Michael Ghil Climate Change and Climate Sensitivity



Non-autonomous Dynamical Systems - I

A linear example as a paradigm
Let us first start with a very difficult problem:

Study the “dynamics" of ẋ = −αx + σt , α, σ > 0. (1)

First remarks:

The system ẋ = −αx , i.e. the autonomous part of (1), is dissipative.
All the solutions of ẋ = −αx converge to 0 as t → +∞.

Is it the case for (1)? Certainly not!
The autonomous part is forced; we even introduce an infinite energy
over an infinite time interval:

R +∞
0 t dt = +∞!

Forward attraction seems to be ill adapted to time-dependent forcing.

Goal:

Find a concept of attraction that is:

(i) compatible with the forward concept, when there is no forcing; and

(ii) provides a way to assess the effect of dissipation in some sense.

For that let’s do some computations...

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity
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A French garden near the castle of La Roche-Guyon

Michael Ghil, Mickaël D. Chekroun, Eric Simonnet, Ilya Zaliapin



Devil’s quarry for a coupling parameter ε = 0.15:
a web of resonances

Michael Ghil, Mickaël D. Chekroun, Eric Simonnet, Ilya Zaliapin



Effect of the noise on Devil’s quarry

Michael Ghil, Mickaël D. Chekroun, Eric Simonnet, Ilya Zaliapin



F.-F. Jin, J.D. Neelin & M. Ghil, Physica D, 98, 442-465, 1996 



Sample measure supported by the R.A.

1 Billion I.D., and a different color palette!

Intensity is α = 0.2.

Do you want different noise intensities?

Michael Ghil Climate Change and Climate Sensitivity



Sample measure supported by the R.A.

Another proj. of the sample measure, “friendlier"

The next slides are similar, with different noise level α
and more I.D....

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity



Sample measure supported by the R.A.

Here α = 0.4. The sample measure is approximated for another
realization ω of the noise, starting from 8 billion I.D.

Now more serious stuff is coming...

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity



Sample measure supported by the R.A.

Sample measures evolve with time.

Recall that these sample measures are the frozen
statistics at a time t for a realization ω.

How do these frozen statistics evolve with time?

Action!

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity
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Property of µω for chaotic stochastic systems-I

The Sinai-Ruelle-Bowen (SRB) property
RDS theory offers a rigorous way to define random versions of stable
and unstable manifolds, via the Lyapunov spectrum, the Oseledec
multiplicative theorem, and a random version of the Hartman-Grobman
theorem.

When the sample measures µω of an RDS have absolutely continuous
conditional measures on the random unstable manifolds, then µω is
called a random SRB measure.

If the sample measure of an RDS ϕ is SRB, then its a “physical"
measure in the sense that:

lim
s→−∞

1
t − s

Z t

s
G ◦ ϕ(s, θ−sω)x ds =

Z
A(θt ω)

G(x)µθt ω(dx), (3)

for almost every x ∈ X (in the Lebesgue sense), and for every
continuous observable G : X → R.

The measure µω is also the image of the Lebesgue measure under the
stochastic flow ϕ: for each region of A(ω), it gives the probability to end
up on that region, when starting from a volume.

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity



Property of µω for chaotic stochastic systems-II

A remarkable theorem of Ledrappier and Young (1988)
Ledrappier and Young have proved that, that if the stationary solution, ρ,
of the Fokker-Planck equation associated to an SDE presenting a
Lyapunov exponent > 0, has a density w.r.t. the Lebesgue measure,
then:

µω is a random SRB measure.

This theorem applies to a large class of dissipative stochastic systems,
namely the hypoelliptic ones that exhibit a Lyapunov exponent > 0: they
all support a random SRB measure.

Furthermore, we have the important relation:

E(µ•) = ρ, (4)

where ρ is the stationary solution of the Fokker-Planck equation, when
the latter is unique.

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity



Mathematics of climate sensitivity-I

The Ruelle response formula
Physically, the challenge is to find the trade-off between the physics
present in the model and the stochastic parameterizations of the
missing physics.
From a mathematical point of view, climate sensitivity can be related to
sensitivity of SRB measures.

The thermodynamic formalism à la Ruelle, in the RDS context, helps to
understand the response of systems out-of-equilibrium, to changes in
the parameterizations (Gundlach, Kifer, Liu).

The Ruelle response formula: Given an SRB measure µ of an
autonomous chaotic system ẋ = f (x), an observable G : X → R, and a
smooth time-dependent perturbation Xt , the time-dependent variations
δtµ of µ are given by:

δtµ(G) =

Z t

−∞
dτ

Z
µ(dx)Xτ (x) · ∇x(G ◦ ϕt−τ (x)),

where ϕt is the flow of the unperturbed system ẋ = f (x).

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity



Mathematics of climate sensitivity-II

The susceptibility function
In the case Xt(x) = φ(t)X (x), the Ruelle response formula can be
written:

δtµ(G) =

Z
dt ′κ(t − t ′)φ(t ′),

where κ is called the response function. The Fourier transform κ̂ of the
response function is called the susceptibility function.

In this case ˆδtµ(G)(ξ) = κ̂(ξ)φ̂(ξ) and since the r.h.s. is a product, there
are no frequencies in the linear response that are not present in the
signal.

In general, the situation can be more complicated and the theory gives
the following criterion of high sensitivity:

C: Poles of the susceptibility function κ̂(ξ) in the upper-half plane
⇒ High sensitivity of the system’s response function κ(t).

RDS theory offers a path for extending this criterion when random
perturbations are considered.

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity



♥ Feed the world today 
or…  

♥ … keep today’s 
climate for tomorrow? 

Davos, Feb. 2008, photos by TIME Magazine, 11 Feb. ‘08; 
see also Hillerbrand & Ghil, Physica D, 2008, 237, 2132–2138, 
doi:10.1016/j.physd.2008.02.015 . 



The The Biofuel Biofuel MythMyth
 Fine illustration of

the moral dilemmas (*).
 Conclusion:

“festina lentae,”
as the Romans (**)

    used to say..

(**) ~ Han dynasty

(*) Hillerbrand & Ghil, Physica D, 2008,
doi:10.1016/j.physd.2008.02.015,
available on line.
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