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Overall Outline

* Lecture I: Observations and planetary flow theory (GFD(*))
 Lecture ll: Atmospheric LFV®") & LRF()
 Lecture lll: EBMs™), paleoclimate & “tipping points”
=) Lecture IV: Nonlinear & stochastic models —RDS(*)
« Lecture V: Advanced spectral methods—-SSA® et al.
* Lecture VI: The wind-driven ocean circulation

(¥) GFD = Geophysical fluid dynamics
() LFV = Low-frequency variability

(*) LRF = Long-range forecasting

+) EBM = Energy balance model

(*) RDS = Random dynamical system

(£) SSA = Singular-spectrum analysis



Motivation
e The IS highly quite

 The system’s major components — the atmosphere, oceans,
ice sheets — evolve on many time and space scales.

o lts predictive understanding has to rely on the system’s
physical, chemical and biological modeling,

but also on the thorough mathematical analysis of the models
thus obtained: the forest vs. the trees.

 The hierarchical modeling approach allows one to
give proper weight to the understanding provided by the
models vs. their realism: back-and-forth between
“toy” (conceptual) and detailed (“realistic”) models,
and between models and data.

 How do we disentangle natural variability from the
anthropogenic forcing. can we & should we, or not?



Climate and Its Sensitivity

| et’s say C()2 doubles: 7, (a) Equilibrium sensitivity
CO,
How will “climate” change?

1. Climate is in stable equilibrium

(fixed point); if so, mean temperature o N .t
will just shift gradually to its new (b, c) Non-e.qul%lbrlum sensitivity
equilibrium value. cTé 4(b) periodic

2. Climate is purely periodic;
if so, mean temperature will
(maybe) shift gradually to its
new equilibrium value.
But how will the period, amplitude
and phase of the limit cycle change?

3. And how about some “real stuff”
now: chaotic + random?

Ghil (in Encycl. Global Environmental
Change, 2002)




Outline

 The IPCC process: results and uncertainties

* Natural climate variability as a source of uncertainties
— sensitivity to initial data =» error growth
— sensitivity to model formulation =» see below!

 Uncertainties and how to fix them

— structural stability and other kinds of robustness
— non-autonomous and random dynamical systems (NDDS & RDS)

« Two illustrative examples

— the Lorenz convection model
— an El Nino—Southern Oscillation (ENSO) model

* Linear response theory and climate sensitivity
« Conclusions and references

— natural variability and anthropogenic forcing: the “grand unification”
— selected bibliography
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Temperatures and GHGs

Greenhouse gases (GHGs) go up,

temperatures go up:

It's gotta do with us, at least a bit,
doesn’t it?

Temperature Anomaly (°C)

Wikicommons, from

Hansen et al. (PNAS, 2006);

see also http://data.giss.nasa.gov/
gistemp/graphs/
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Uniforiunztely, tnings
|

s

Try to achieve better
interpretation of, and

agreement between,
models ...

Ghil, M., 2002: Natural climate variability,
in Encyclopedia of Global Environmental
Change, T. Munn (Ed.), Vol. 1, Wiley

Natural variability introduces additional complexity into
the anthropogenic climate change problem

The most common interpretation of observations and
GCM simulations of climate change is still in terms
of a scalar, linear Ordinary Differential Equation (ODE)

g k= Z k. —|feedbacks (+ve and -ve)
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Hence, we need to consider instead a system of nonlinear
Partial Differential Equations (PDESs), with parameters

and multiplicative, as well as additive forcing
(deterministic + stochastic)

dX
_=N(X9t’usﬂ)
dt
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Global warming and
its socio-economic impacts

Mutti-MopEL AVERAGES AND AsSESSED RANGES FOR SURFACE WARMING

Temperatures rise: W
« What about impacts? 4 — Z%iéﬁ?ﬁifé‘é’f“"‘ d
6 | —20th centu i
* How to adapt? 2 ' -
g I
The answer, my friend, . EE
is blowing in the wind, £ g
i.e., it depends on the 3
accuracy and reliability 7 A
of the forecast ... A L ko
= ’ . - - , : : -0 < 0 < <L
1900 2000 2100

Year

Figure SPM.5. Solid finas are multi-model giobal averages of surface warming (relative to 1980-1999) for the scenanios A2, A1B and B1,

S O ur Ce ; I P C C (2 O O 7) , shown as continuations of the 20th century simulations. Shading denotes the +1 standard deviation range of individual model annual

avarages. The orange line is for the experiment wheare concentrations were held constant at year 2000 values. The gray bars at right

A R 4 WG I S P M indicate the bast astimate (solid line within each bar) and the likely range assessed for the six SRES marker scanarios. The assessment of
J J the best astimate and likely ranges in the gray bars includas the AOGCMSs in the left part of the figure, as well as rasults fom a hierarchy

of indapandant models and obsearvational constraints. {Figuras 10.4 and 10.29)



Global warming and

its socio-economic impacts— |l

. (a) Global average surface temperature change
Temperatures rise: i
 What about impacts? 5. 1
e How to adapt? s
2
AR5 VS AR4 (b) Northern Hemisphere September sea ice extent
A certain air of déja vu: ey PP
GHG “scenarios” have been £ o
replaced by “representative 0
concentration pathways” (RCPs), ..
. . . 1950 2000 2050 2100 s 2 £ p
more dlre predICtlonS’ (C) Global ocean surface pH 8228
but the uncertainties remain. .
= e - d =
:;él 7ja \ géé_
Source : IPCC (2013), . | | 1 7
ARS’ WGI’ SPM 1950 2000 2050 2100



Outline

* Natural climate variability as a source of uncertainties
— sensitivity to initial data =» error growth
— sensitivity to model formulation =» see below!



Deterministic predictions

Verification

Ensemble forecast of Lothar (surface pressure)
Start date 24 December 1999 : Forecast time T+42 hours

Forecast 2

Forecast 3
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Courtesy Tim Palmer, 2009




Exponential divergence vs. “coarse graining”

The classical view of dynamical
systems theory is:

positive Lyapunov exponent =
trajectories diverge exponentially

But the presence of multiple
regimes implies a much
more structured behavior
In phase space

Still, the probability distribution
function (pdf), when calculated
forward in time, is pretty
smeared out

L. A. Smith (Encycl. Atmos. Sci., 2003)



So what’s it gonna be like, by 21007

Table SPM.2. Recant trands, ssssasmeant of human influence on the trend and projections for extreme westher events for which thers
2 an obsanved lste-20t0h cantwry trend. (Tablee 3.7, 3.8, 9.4; Sections 3.8, 5.5, 9.7, 11.2-11.9}

Likelihood of future trends

based on pcbom for
21st century ualng

SRES scenarios
days and nights over Very Ikely© Likalyd Virtually certaind
moet land areas
Warmer and more fraquent
hot days and nights over Very Ikealy® Liely fnights) Virtually certaind
moet land areas
Warm spella/heat waves.
Frequency incraases over Liely More ikely than not' Very lkely
moet land areas
Heavy precipitation events.
total mial(:om houyﬁ:fq Licely More licely than not! Very ikely
increases over most areas
Area affected by Likedy in many
droughts increasse regions since 19708 More liely than not Likely
lmemotlopcd cydona Likedy in some
activity increases regions since 1970 More liely than notf Likely
Increased incidence of
extrame high s=a level Liely Move likely than not'h Liely




Outline

 Uncertainties and how to fix them

— structural stability and other kinds of robustness
— non-autonomous and random dynamical systems (NDDS & RDS)



How important are different sources of
uncertainty?

» Varies, but typically no single source dominates.

Internal
variability

Carbon cycle

Structural
uncertainty

Parameter
uncertainty

- Downscalin
> . :

precipitation changes for the 2080s relative to

pox in SE England
Source: Met Office

1 Uppsala/Nordica



Can we, nonlinear dynamicists, help?

The uncertainties
might be intrinsic,

rather than mere o o o BT
“tuning problems” i L

If so, maybe
stochastic structural
stability could help!

Might fit in nicely with
recent taste for

“stochastic
parameterizations”

Figure 7.5-1. The three towers of differentiable dynamics.

Tte DDS dneam of stractunal stability (from Abraham & Marsden, 1978)



Non-autonomous Dynamical Systems

A linear, dissipative, forced example: forward vs. pullback attraction

Consider the scalar, linear ordinary differential equation (ODE)
r=—ar+ot, a>0, 0>0.

The autonomous part of this ODE, T = —ax , is dissipative
and all solutions x(t; :EO) — :U(t; :U(O) — :UO) convergeto0as t — +00.

What about the non-autonomous, forced ODE? As the energy being put into the system
by the forcing is dissipated, we expect things to change in time. In fact, if we “pull back”
far enough, replace x(t; x,) by x(s,t;x9) = x(s,t;x(s) = xg),

xz(s,t;xo), with xzg varying

and let s — —oo , we get th
pullback attractor a = a(t)

a(t) — 2(t— 1)

200

150

in the figure,
CT ]_ 100
t) = —(t— —). s/
alt) = —(t = ) ’

| | | | | | | |
-4 -2 o 2 4 6 8 10 12 14 16



Non-autonomous Dynamical Systems - Il

@ We've just shown that:

|x(t, s; x0) — a(t)| P 0 ; for every t fixed,

and for all initial data xo, with a(t) = Z(t — 1/a).

@ We've just encountered the concept of pullback attraction;
here {a(t)} is the pullback attractor of the system (1).

@ What does it mean physically?

Michael Ghil Climate Change and Climate Sensitivity



Non-autonomous Dynamical Systems - Il

@ We've just shown that:

|x(t, s; x0) — a(t)| P 0 ; for every t fixed,

and for all initial data xo, with a(t) = Z(t — 1/a).

@ We've just encountered the concept of pullback attraction;
here {a(t)} is the pullback attractor of the system (1).

@ What does it means physically?
The pullback attractor provides a way to assess an asymptotic regime
at time t — the time at which we observe the system — for a system
starting to evolve from the remote past s, s << .

@ This asymptotic regime evolves with time: it is a dynamical object.

@ Dissipation now leads to a dynamic object rather than to a static one,
like the strange attractor of an autonomous system.

Michael Ghil Climate Change and Climate Sensitivity



A little history of climate & stochastmty

* A. Einstein’s (1905) Brownian motion paper.

« K. It0 (prof. at Kyoto U., RIMS director)
formulates 1t6 calculus in 1942, enables solution
of stochastic differential equations (SDEs); =
It0’s lemma is the stochastic counterpart of
Leibniz’s chain rule for differentiation.

« K. Hasselmann (Tellus, 1976) describes climate
as Brownian motion, with weather e, RGmS e
the stochastic driver.

* In this view, the deterministic part 0

Ny N
of the model is stable, and random W

perturbations decay to the mean.

5

-10

Auto-regressive (AR) decay




Random Dynamical Systems (RDS), | -

This theory is the counterpart for randomly forced dynamical
systems (RDS) of the geometric theory of ordinary differential
equations (ODEs). It allows one to treat stochastic differential
equations (SDEs) — and more general systems driven by noise
— as flows in (phase space) x (probability space).

SDE~ODE, RDS~DDS, L. Arnold (1998)~V.I. Arnol'd (1983).

Michael Ghil Climate Change and Climate Sensitivity



Random Dynamical Systems (RDS), | -

This theory is the counterpart for randomly forced dynamical
systems (RDS) of the geometric theory of ordinary differential
equations (ODEs). It allows one to treat stochastic differential
equations (SDEs) — and more general systems driven by noise
— as flows in (phase space) x (probability space).

SDE~ODE, RDS~DDS, L. Arnold (1998)~V.I. Arnol'd (1983).

Setting:

(i) A phase space X. Example: R".

(i) A probability space (€2, F,P). Example: The Wiener space
Q = Co(R; R") with Wiener measure P.
(iif) A model of the noise 6(t) : Q — € that preserves the measure P, i.e.
0(t)P = P; 0 is called the driving system.
Example: W(t,0(s)w) = W(t+ s,w) — W(s,w);
it starts the noise at s instead of t = 0.

(iv) A mapping ¢ : R x Q x X — X with the cocycle property.
Example: The solution operator of an SDE.

Michael Ghil Climate Change and Climate Sensitivity



RDS, IllI-

A random attractor A(w) is both invariant and “pullback™ attracting:
(@) Invariant: ¢(t, w)A(w) = A(0(t)w).
(b) Attracting: VB C X, lim;_, o dist(p(t, 0(—t)w)B, A(w)) =0 a.s.

Pullback attraction to A( ®)

B(O(-1,)o)

BRI B(*tg Joo) {oixX {8(NorX
A(®) ot . wA(® )=A(B()w )
e ‘,-‘
___-——"_-__. T ‘__—‘-—1"‘_“—-‘
== B(=T)00 @ (1 Jo Q

B(-T,)0

Michael Ghil Climate Change and Climate Sensitivity



Outline

« Two illustrative examples

— the Lorenz convection model
— an El Nino—Southern Oscillation (ENSO) model



Random attractor of the stochastic Lorenz system

Snapshot of the random attractor (RA)

20

-20

-30

40~
40

@ A snapshot of the RA, A(w), computed at a fixed time ¢t and for the
same realization w; it is made up of points transported by the stochastic
flow, from the remote pastt — 7, T >> 1.

@ We use multiplicative noise in the deterministic Lorenz model, with the
classical parameter values b = 8/3, 0 = 10, and r = 28.

@ Even computed pathwise, this object supports meaningful statistics.

Michael Ghil Climate Change and Climate Sensitivity



Sample measures supported by the R.A.

-20 -15 -10 -5 o] 5 10 15 20
X

@ We compute the probability measure on the R.A. at some fixed time t,
and for a fixed realization w. We show a “projection”, [ u.(x, y, z)dy,
with multiplicative noise: dxj=Lorenz(xi, X2, x3)dt + o x}dW;; i € {1,2,3}.

@ 10 million of initial points have been used for this picture!

Michael Ghil Climate Change and Climate Sensitivity



Sample measure supported by the R.A.

@ Sitill 1 Billion I.D., and o = 0.5. Another one?

Michael Ghil Climate Change and Climate Sensitivity



Sample measure supported by the R.A.

Sample measures evolve with time.

@ Recall that these sample measures are the frozen
statistics at a time t for a realization w.

@ How do these frozen statistics evolve with time?

@ Action!

Michael Ghil Climate Change and Climate Sensitivity



A day in the life of the Lorenz (1963) model’s random attractor, or LORA for short;
see Sl in Chekroun, Simonnet & Ghil (2011, Physica D) or
Vimeo movie: https://vimeo.com/240039610




Outline

 The IPCC process: results and uncertainties

* Natural climate variability as a source of uncertainties
— sensitivity to initial data =» error growth
— sensitivity to model formulation =» see below!

 Uncertainties and how to fix them

— structural stability and other kinds of robustness
— non-autonomous and random dynamical systems (NDDS & RDS)

« Two illustrative examples

— the Lorenz convection model
— an El Nino—Southern Oscillation (ENSO) model

» Linear response theory and climate sensitivity
« Conclusions and references

— natural variability and anthropogenic forcing: the “grand unification”
— selected bibliography



Climate and Its Sensitivity

| et’s say C()2 doubles: 7, (a) Equilibrium sensitivity
CO,
How will “climate” change?

1. Climate is in stable equilibrium

(fixed point); if so, mean temperature o N .t
will just shift gradually to its new (b, c) Non-e.qul%lbrlum sensitivity
equilibrium value. cTé 4(b) periodic

2. Climate is purely periodic;
if so, mean temperature will
(maybe) shift gradually to its
new equilibrium value.
But how will the period, amplitude
and phase of the limit cycle change?

3. And how about some “real stuff”
now: chaotic + random?

Ghil (in Encycl. Global Environmental
Change, 2002)




Classical Strange Attractor

Physically closed system, modeled
mathematically as autonomous
system: neither deterministic
(anthropogenic) nor random
(natural) forcing.

The attractor is strange, but still
fixed in time ~ “irrational” number.

Climate sensitivity ~ change in the
average value (first moment) of the
coordinates (x, y, z) as a parameter
A\ changes.




Random Attractor

Physically open system, modeled
mathematically as non-autonomous
system: allows for deterministic
(anthropogenic) as well as random
(natural) forcing.

The attractor is “pullback” and
evolves in time ~ “imaginary” or
“‘complex” number.

Climate sensitivity ~ change in the
statistical properties (first and
higher-order moments) of the
attractor as one or more
parameters (A, |, ...) change.

Ghil (Encyclopedia of Atmospheric
Sciences, 2" ed., 2012)
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Parameter dependence - | 5 00557

It can be smooth or it can be rough:
Nifo-3 SSTs from intermediate coupled model

for ENSO (Jin, Neelin & Ghil, 1994, 1996)

y

8
T

Averaged temperature (°C)

sesssyasy

Skewness & kurtosis of the SSTs:
time series of 4000 years,

AS=3-10"" TR

Skewness dependence Kurtosis dependence
60 T T T T T T 40
; ; ; ; ; ; =)

<Y
Y
o
Q
%
1Y
Y
4y
N : .

-2 i i i i i i -1 i i i i i i

0.91 0.92 0.93 0.94 0.95 0.96 0.91 0.92 0.93 0.94 0.95 0.96
) )

M. Chekroun (work in progress)



Sample measures for an NDDE model of ENSO
The Galanti-Tziperman (GT) model (JAS, 1999)

% = —epT(t) — Mo(T(t) — Tsup(h(t))), Neutral delay-differential equation (NDDE),
derived from Cane-Zebiak and Jin-Neelin
models for ENSO: T is East-basin SST

, and h is thermocline depth.
—MQTle_Em(T—I_TQ)ILL(t — Ty — 1 )T(t — To — l)
2

2 2
—€m &5 - T_Q — T_Q
—|_M 37_26 2 lLL( 2 >T t 2 >. 00 Relative response in % of <h>
o 8 i/\f
Seasonal forcing given by 5 g
£ 2 <
wu(t) =1+ ecos(wt + ¢). Lo aE
The pullback attractor and its g _
invariant measures were computed. Pesponsan o o,

Figure shows the changes in the mean,
2nd & 4th moment of h(t), along with the
Wasserstein distance d,,, for changes
of 0—-5% in the delay parameter 7 .

100 W

0 1 2 3 4
Change in % of 7, ;=8.476 Change in % of 7, ;=8.476

Note intervals of both smooth & rough dependence!



How to define climate sensitivity or,
What happens when there’s natural variability?

One usually defines climate sensitivity y as AT/AQ,
where T is global mean temperature in °C,

and AQ is insolation change in %.

Thus y = 1 °C per 1 % change in Q.

But there is much more to climate
than mean T : there is the actual
distribution of temperatures in time Time~depedent invariant meastre of the GT-mode
and space, there’s extrema of
temperatures and of precipitations,
etc., as in the figure. 0a]

0.2 ;

So we would like a better,
more flexible definition, which 0
does take into account these “details,”
as well as chaotic behavior:

v = Odw /0T or _
v = Adw /AT " "




How to define climate sensitivity or,
What happens when there’s natural variability?

This definition allows us to watch how “the earth moves,” as it is affected
by both natural and anthropogenic forcing, in the presence of natural
variability, which includes both chaotic & random behavior:

Time-dependent invariant measure (t=276.25 yr.)

.
120

v = Odw /0T or
. v = Adw /AT

Time-dependent invariant measure (t=276.75 yr.)

80



Parameter dependence — Il

When it is smooth, one can optimize a GCM'’s single-parameter dependence

JJA JJA
2.6} AGCM ens mean = 2.6 AGCM ens mean =
= 5 5 Quadratic metamodel — 5 5 Quadratic metamodel —
-8 ol Linear metamodel — ad Linear metamodel —
€24l 2.4}
= \‘/
23 2.3F
O
O 2.2¢ 2.2}
w
€21 21}
2.0+ 2.0+
3 4 S 6 i 2 4 6 8 10 12
Gustiness param. (m/s) Viscosity time scale (days)

ICTP AGCM (Neelin, Bracco, Luo, McWilliams & Meyerson, PNAS, 2010)



Parameter dependence — Il

Multi-objective algorithms avoid arbitrary weighting of criteria
in a unique cost function:

S8

] O -

3R ) . @ PRECIP

;) (& 03§ + @ T200

N | © U200

RENRRS [ @ V200

3R o | @ U925

S} 7 | @ V925

QN og. @ Q500
&7 OMSSLP

@ LSTA

Optimization algorithms that are  O(N) and O(N?), rather than O(SV),
where N is the number of parameters and S is the sampling density.

ICTP AGCM (Neelin, Bracco, Luo, McWilliams & Meyerson, PNAS, 2010)



Outline

 (Conclusions and references

— natural variability and anthropogenic forcing: the “grand unification”
— selected bibliography



Concluding remarks, | - RDS and RAs

Summary
« A change of paradigm from closed, autonomous systems

to open, non-autonomous ones.
Random attractors are (i) spectacular, (ii) useful, and
(iii) just starting to be explored for climate applications.

Work in progress

Study the effect of specific stochastic parametrizations
on model robustness.

Applications to intermediate models and GCMs.
Implications for climate sensitivity.

Implications for predictability?



Yet another (grand?) unification

Lorenz (JAS, 1963)

Climate is deterministic and autonomous,
but highly nonlinear.

Trajectories diverge exponentially,
forward asymptotic PDF is multimodal.

Hasselmann (Tellus, 1976)

Climate is stochastic and noise-driven,
but quite linear.

Trajectories decay back to the mean,
forward asymptotic PDF is unimodal.

Grand unification (?)

Climate is deterministic + stochastic,
as well as highly nonlinear.

Internal variability and forcing interact
strongly, change and sensitivity
refer to both mean and higher moments.

TR EEE

Time-depedent invariant meas

h(t+1)

ure of the GT-model

h(t)

0.35

03

0.25

02

0.15

0.1

0.05



Concluding remarks, Il —
Climate change & climate sensitivity

What do we know?

It’s getting warmer.
« We do contribute to it.
So we should act as best we know and can!

Wnat o co?



Concluding remarks, Il —
Climate change & climate sensitivity

What do we know?

* |t’s getting warmer.
« We do contribute to it.
« So we should act as best we know and can!

What do we know less well?
« By how much?
— Is it getting warmer ...
— Do we contribute to it ...
« How does the climate system (atmosphere, ocean, ice, etc.) really work?
« How does natural variability interact with anthropogenic forcing?

ynar o co?



Concluding remarks, Il —
Climate change & climate sensitivity

What do we know?

* |t’s getting warmer.
« We do contribute to it.
« So we should act as best we know and can!

What do we know less well?
« By how much?
— Is it getting warmer ...
— Do we contribute to it ...
« How does the climate system (atmosphere, ocean, ice, etc.) really work?
« How does natural variability interact with anthropogenic forcing?

What to do?

- Better understand the system and its forcings.

« Explore the models’, and the system’s, robustness and sensitivity
— stochastic structural and statistical stability!
— linear response = response function + susceptibility function!!
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The Lorenz (1963a) convection model

Problem 2: Find the appropriate software to compute the
Lorenz “butterfly” and use it to do so.

Problem 4: Find the appropriate software to compute the statistics

of the Lorenz “butterfly” — e.g., pdf, EOFs —and use it to do so.
Glossary

pdf = probability density function
EOF = empirical orthogonal function

Problem 8: Add some noise to the Lorenz convection model and compute:
a) some sample solutions;

b) the invariant measure (more precisely, an approximate pdf);
c) the random attractor; and

d) its sensitivity to parameter changes.
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Galileo on math, science & opinions, 1

La filosofia e scritta in questo grandissimo libro che continuamente ci sta
aperto innanzi a gli occhi (io dico l'universo), ma non si puo intendere se prima
non s'impara a intender la lingua, e conoscer i caratteri, ne' quali e scritto. Egli
e scritto in lingua matematica, e i caratteri son triangoli, cerchi ed altre figure
geometriche, senza i quali mezzi e impossibile a intenderne umanamente
parola; senza questi € un aggirarsi vanamente per un oscuro laberinto.

G. Galilei, Il Saggiatore, VI, 232)

Philosophy is written in this grand book — | mean the Universe —which stands
continually open to our gaze, but it cannot be understood unless one first
learns to comprehend the language and interpret the characters in which it is
written. It is written in the language of mathematics, and its characters are
triangles, circles and other geometrical figures, without which it is humanly
impossible to understand a single word of it.



N
nature 28 March 1991

letters to nature
Nature 350, 324 - 327 (1991); doa:10.1038/350324a0

Interdecadal oscillations and the warming trend
in global temperature time series

M. Ghil & H. Vautard

THE ability to distinguish a warming trend from natural variability is
critical for an understanding of the climatic response to increasing

greenhouse-gas concentrations. Here we use singular spectrum ana]ysisl to
analyse the time series of global surface air tem-peratures for the past 135

years?, allowing a secular warming trend and a small number of oscillatory
modes to be separated from the noise. The trend is flat until 1910, with an
increase of 0.4 °C since then. The oscillations exhibit interdecadal periods
of 21 and 16 years, and interannual periods of 6 and 5 years. The interannual
oscillations are probably related to global aspects of the El Nino-Southern

Oscillation (ENSQO) phenomen0n3- The interdecadal oscillations could be

associated with changes in the extratropical ocean circulation?. The
oscillatory components have combined (peak-to-peak) amplitudes of 0.2 °C,
and therefore limit our ability to predict whether the inferred secular

warming trend of 0.005 °Cyr ! will continue. This could postpone
incontrovertible detection of the greenhouse warming signal for one or two
decades.

;” Nature © Macmillan Publishers Ltd 1991 Registered No. 785998 England.



Galileo on math, science & opinions, 2

Si perche l'autorita dell'opinione di mille nelle scienze non val
per una scintilla di ragione di un solo.

In questions of science, the authority of a thousand is not worth
the humble reasoning of a single individual.

Galileo Galilei, Venere, Luna e Pianeti Medicei,
e nuove apparenze di Saturno, p. 8/20



Chekroun, Simonnet and Ghil, 2011

Timmerman & Jin (Geophys. Res. Lett., 2002) have derived the following
low-order, tropical-atmosphere—ocean model. The model has three variables:
thermocline depth anomaly h, and
SSTs T; and T» in the western and eastern basin.

T =—a(Ti = T;) - EU(T, - Th),

. = —OC(TZ - Tr) - %(TZ - Tsub)7

h  =r(—h—bLr/2).

The related diagnostic equations are:

Tar =T, — 7501 —tanh(H + h, — 2)/h"]
T =T -TN)k-1]

@ 7: the wind stress anomalies, w = —37/Hn: the equatorial upwelling.
@ u = pLr/2: the zonal advection, Tsy: the subsurface temperature.

Wind stress bursts are modeled as white noise &; of variance o,
and  measures the strength of the zonal advection.

Michael Ghil Climate Change and Climate Sensitivity



Random Shil’'nikov horseshoes

0=0.005 0=0.05

@ Horseshoes can be noise-excited,
left: a weakly-perturbed limit cycle, right: the same with larger noise.

@ Golden: most frequently-visited areas; white 'plus’ sign: most visited.

Michael Ghil Climate Change and Climate Sensitivity
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GHGs rise!

It's gotta do with us, at
least a bit, ain’t it?

But just how much?

IPCC (2007)

Anthropogenic

Natwural
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Radiative Forcing (W m?)




AR4 adjustment of 20" century simulation

www.lseca

Hindcasts and Forecasts of Global Mean Temperature

T T I T T T l T T T T | T T T T T T T I T T T l T

Co

.ll ITTTTTT IIIHIIIIII ITTTTTT

o

inatubo

(n

SSanta Mawia sung 21 Chichon = i

Y00 1920 1940 1960 1980 2000 ]

of AR -,":‘Mj,:-,:}*r' ) ’,’ -

2K Ed Tredger E

, i | AR4 Sir;\ulations without 1900-1950 anomaly adjustment | (Ph D theSIS’ LS E’ 2009) f

1 C 1 1 1 1 1 1 | 1 1 | 1 | 1 1 1 1 1 L L | L 1 | —
1900 1920 1940 1960 1980 2000 2020 2040

Grantham Research Institute on L.A. (“Lenny”) Smith (2009)

Climate Change and o
the Environment personal communication



RDS, II -

dle property:
b tw)x =
it, 8(s)w) o (s, w)x

X
t)w
Q

@ o is a random dynamical system (RDS)
@ O(t)(x,w) = (O(t)w, ¢(t,w)x) is a flow on the bundle

Michael Ghil Climate Change and Climate Sensitivity



Non-autonomous Dynamical Systems - |

A linear example as a paradigm

Let us first start with a very difficult problem:
Study the “dynamics" of X = —ax +ot, a,0 > 0. 1)
First remarks:

@ The system x = —ax, i.e. the autonomous part of (1), is dissipative.
All the solutions of x = —ax converge to 0 ast — +oo.

@ Is it the case for (1)?

)

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity




Non-autonomous Dynamical Systems - |

A linear example as a paradigm

Let us first start with a very difficult problem:
Study the “dynamics" of X = —ax +ot, a,0 > 0. 1)
First remarks:

@ The system x = —ax, i.e. the autonomous part of (1), is dissipative.
All the solutions of x = —ax converge to 0 ast — +oo.

@ Is it the case for (1)? Certainly not!
The autonomous part is forced; we even introduce an infinite energy
over an infinite time interval: 0*“"[ dt = +oo!

Forward attraction seems to be ill adapted to time-dependent forcing.

)
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Non-autonomous Dynamical Systems - |

A linear example as a paradigm

Let us first start with a very difficult problem:
Study the “dynamics" of X = —ax +ot, a,0 > 0. 1)
First remarks:

@ The system x = —ax, i.e. the autonomous part of (1), is dissipative.
All the solutions of x = —ax converge to 0 ast — +oo.

@ Is it the case for (1)? Certainly not!
The autonomous part is forced; we even introduce an infinite energy
over an infinite time interval: O*‘X’t dt = 400!

Forward attraction seems to be ill adapted to time-dependent forcing.
Find a concept of attraction that is:
(i) compatible with the forward concept, when there is no forcing; and
(i) provides a way to assess the effect of dissipation in some sense.

\ N

For that let's do some computations...

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity




A French garden near the castle of La Roche-Guyon

Michael Ghil, Mickaél D. Chekroun, Eric Simonnet, llya Zaliapin



Devil’'s quarry for a coupling parameter ¢ = 0.1
a web of resonances

Michael Ghil, Mickaél D. Chekroun, Eric Simonnet, Ily:



Effect of the noise on Devil's quarry

Michael Ghil, Mickaél D. Chekroun, Eric Simonnet, llya Zaliapin



Devil's Bleachers'in'a 1-D.ENSO Model

Ratio of ENSO frequency to annual cycle

Frequency Ratio

| [ Chaotic Regime
0.01 0.20 0.25 0.33 0.50 1.00

F.-F. Jin, J.D. Neelin & M. Ghil, Physica D, 98, 442-465, 1996




Sample measure supported by the R.A.

@ 1 Billion I.D., and a different color palette!
@ Intensity is @ = 0.2.

@ Do you want different noise intensities?

Michael Ghil Climate Change and Climate Sensitivity
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@ The next slides are similar, with different noise level «
and more I.D....

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity




@ Here a = 0.4. The sample measure is approximated for another
realization w of the noise, starting from 8 billion I.D.

@ Now more serious stuff is coming...

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity




Sample measure supported by the R.A.

Sample measures evolve with time.

@ Recall that these sample measures are the frozen
statistics at a time t for a realization w.

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity



Sample measure supported by the R.A.

Sample measures evolve with time.

@ Recall that these sample measures are the frozen
statistics at a time t for a realization w.

@ How do these frozen statistics evolve with time?

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity



Property of p,, for chaotic stochastic systems-I

The Sinai-Ruelle-Bowen (SRB) property

@ RDS theory offers a rigorous way to define random versions of stable
and unstable manifolds, via the Lyapunov spectrum, the Oseledec
multiplicative theorem, and a random version of the Hartman-Grobman
theorem.

@ When the sample measures ., of an RDS have absolutely continuous
conditional measures on the random unstable manifolds, then p, is
called a random SRB measure.

@ If the sample measure of an RDS ¢ is SRB, then its a “physical”
measure in the sense that:

t

lim —2— [ Gow(s,0_sw)x ds:/ G uew(dx),  (3)
S A(Grw)

S——ool — s

for almost every x € X (in the Lebesgue sense), and for every
continuous observable G : X — R.

@ The measure p,, is also the image of the Lebesgue measure under the
stochastic flow ¢: for each region of A(w), it gives the probability to end
up on that region, when starting from a volume.

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity




Property of p,, for chaotic stochastic systems-Il

A remarkable theorem of Ledrappier and Young (1988)

@ Ledrappier and Young have proved that, that if the stationary solution, p,
of the Fokker-Planck equation associated to an SDE presenting a
Lyapunov exponent > 0, has a density w.r.t. the Lebesgue measure,
then:

L IS @ random SRB measure.

@ This theorem applies to a large class of dissipative stochastic systems,
namely the hypoelliptic ones that exhibit a Lyapunov exponent > 0: they
all support a random SRB measure.

@ Furthermore, we have the important relation:

E(ue) = p, 4)

where p is the stationary solution of the Fokker-Planck equation, when
the latter is unique.

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity



Mathematics of climate sensitivity-|

The Ruelle response formula

@ Physically, the challenge is to find the trade-off between the physics
present in the model and the stochastic parameterizations of the
missing physics.

From a mathematical point of view, climate sensitivity can be related to
sensitivity of SRB measures.

@ The thermodynamic formalism a la Ruelle, in the RDS context, helps to
understand the response of systems out-of-equilibrium, to changes in
the parameterizations (Gundlach, Kifer, Liu).

@ The Ruelle response formula: Given an SRB measure y of an
autonomous chaotic system x = f(x), an observable G : X — R, and a
smooth time-dependent perturbation X;, the time-dependent variations
o of w are given by:

e =/7I dT/p(dx)XT(x)-Vx(Gogpt,T(x)),

where ¢ is the flow of the unperturbed system x = f(x).

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity



Mathematics of climate sensitivity-II

The susceptibility function

@ In the case Xi(x) = ¢(t)X(x), the Ruelle response formula can be
written:

5iu(G) = / dt’s(t —t")e(t"),

where « is called the response function. The Fourier transform & of the
response function is called the susceptibility function.

@ In this case & u(G)(€) = #(€)d(€) and since the r.h.s. is a product, there
are no frequencies in the linear response that are not present in the
signal.

@ In general, the situation can be more complicated and the theory gives
the following criterion of high sensitivity:
¢: Poles of the susceptibility function ~ &(€) in the upper-half plane
=- High sensitivity of the system’s response function K(t).

@ RDS theory offers a path for extending this criterion when random
perturbations are considered.

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity
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¥ ... keep today’s

climate for tomorrow?

Thought leaders
Rice, top left, spoke
of multilateralism,
while Bono, left,
demanded more
action on poverty.
Presidents Karzai
and Musharraf,
right, both face
troubles at home

Agitator Gore

¥ Feed the world today

o r compact to tackle
I climate change

and poverty

Davos, Feb. 2008, photos by TIME Magazine, 11 Feb. ‘08;

see also Hillerbrand & Ghil, Physica D, 2008, 237, 2132—-2138,
doi:10.1016/j.physd.2008.02.015 .
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Politicians and Big Business

are pushing biofuels like

corn-based ethanol as

e alternatives to oil. All they’re
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